Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 596-614.e14, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508232

RESUMEN

Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología , Linfocitos T/inmunología , Biomarcadores de Tumor/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromosomas Humanos Par 9/genética , Estudios de Cohortes , Ciclina D1/genética , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Amplificación de Genes , Humanos , Evasión Inmune/efectos de los fármacos , Análisis Multivariante , Mutación/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple/genética , Receptores CCR5/metabolismo , Linfocitos T/efectos de los fármacos , Carga Tumoral/genética
2.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857425

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Asunto(s)
Neoplasias Encefálicas/inmunología , Epigénesis Genética , Glioblastoma/inmunología , Evasión Inmune/inmunología , Células Mieloides/inmunología , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell ; 171(6): 1259-1271.e11, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107330

RESUMEN

Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Antígenos HLA/genética , Neoplasias Pulmonares/inmunología , Escape del Tumor , Adulto , Anciano , Anciano de 80 o más Años , Presentación de Antígeno , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Estudios de Cohortes , Femenino , Antígenos HLA/inmunología , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple
4.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166609

RESUMEN

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Asunto(s)
Cromatina/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Nucleosomas/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica/fisiología , Proteómica/métodos , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Factores de Elongación Transcripcional/metabolismo
5.
Blood ; 143(10): 933-937, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38194681

RESUMEN

ABSTRACT: T-ALL relapse usually occurs early but can occur much later, which has been suggested to represent a de novo leukemia. However, we conclusively demonstrate late relapse can evolve from a pre-leukemic subclone harbouring a non-coding mutation that evades initial chemotherapy.


Asunto(s)
Leucemia-Linfoma de Células T del Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Mutación , Recurrencia , Enfermedad Crónica , Células Clonales
6.
Nature ; 567(7749): 479-485, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894752

RESUMEN

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.


Asunto(s)
Antígenos de Neoplasias/inmunología , Evolución Molecular , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Escape del Tumor/inmunología , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Pronóstico , Microambiente Tumoral/inmunología
8.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240378

RESUMEN

The stimulator of interferon genes (STING) is an adaptor protein involved in the activation of IFN-ß and many other genes associated with the immune response activation in vertebrates. STING induction has gained attention from different angles such as the potential to trigger an early immune response against different signs of infection and cell damage, or to be used as an adjuvant in cancer immune treatments. Pharmacological control of aberrant STING activation can be used to mitigate the pathology of some autoimmune diseases. The STING structure has a well-defined ligand binding site that can harbor natural ligands such as specific purine cyclic di-nucleotides (CDN). In addition to a canonical stimulation by CDNs, other non-canonical stimuli have also been described, whose exact mechanism has not been well defined. Understanding the molecular insights underlying the activation of STING is important to realize the different angles that need to be considered when designing new STING-binding molecules as therapeutic drugs since STING acts as a versatile platform for immune modulators. This review analyzes the different determinants of STING regulation from the structural, molecular, and cell biology points of view.


Asunto(s)
Adyuvantes Inmunológicos , Nucleótidos Cíclicos , Animales , Sitios de Unión
9.
Bioinformatics ; 37(11): 1506-1514, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30726875

RESUMEN

MOTIVATION: Most evolutionary analyses are based on pre-estimated multiple sequence alignment. Wong et al. established the existence of an uncertainty induced by multiple sequence alignment when reconstructing phylogenies. They were able to show that in many cases different aligners produce different phylogenies, with no simple objective criterion sufficient to distinguish among these alternatives. RESULTS: We demonstrate that incorporating MSA induced uncertainty into bootstrap sampling can significantly increase correlation between clade correctness and its corresponding bootstrap value. Our procedure involves concatenating several alternative multiple sequence alignments of the same sequences, produced using different commonly used aligners. We then draw bootstrap replicates while favoring columns of the more unique aligner among the concatenated aligners. We named this concatenation and bootstrapping method, Weighted Partial Super Bootstrap (wpSBOOT). We show on three simulated datasets of 16, 32 and 64 tips that our method improves the predictive power of bootstrap values. We also used as a benchmark an empirical collection of 853 one to one orthologous genes from seven yeast species and found wpSBOOT to significantly improve discrimination capacity between topologically correct and incorrect trees. Bootstrap values of wpSBOOT are comparable to similar readouts estimated using a single method. However, for reduced trees by 50 and 95% bootstrap thresholds, wpSBOOT comes out the lowest Type I error (less FP). AVAILABILITY AND IMPLEMENTATION: The automated generation of replicates has been implemented in the T-Coffee package, which is available as open source freeware available from www.tcoffee.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Genome Res ; 28(6): 836-845, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29728366

RESUMEN

Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of an SVA retrotransposon reporter. By using naïve versus primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naïve cells, implicating it in programming epigenetic marks in development. Although the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages <5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s, and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon noncoding DNA.


Asunto(s)
Genoma Humano , Proteínas Nucleares/genética , Retroelementos/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Animales , Metilación de ADN/genética , Retrovirus Endógenos/genética , Heterocromatina/genética , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Ratones , Regiones Promotoras Genéticas
11.
Breed Sci ; 71(2): 134-143, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377061

RESUMEN

A total of 251 Dura cross Pisifera (DxP) hybrid palms from six populations descending from six parental African Pisifera origins and involving 12 progenies were analyzed with 19 selected Simple Sequence Repeats (SSR) markers. A total of 110 alleles were produced, ranging from three to eight per SSR, with a mean of 5.8 alleles per SSR locus. Of these, 68.5% were considered shared alleles by more than one population and the remaining 31.5% were population specific alleles. They generated between six and 21 haplotypes in all populations, and depending on the SSR marker, between one and 10 haplotypes within populations. Various parameters for analyzing genetic variability, differentiation and genetic structure were computed using GenAlEx, Structure and Darwin software. The obtained results confirmed microsatellites as a robust, feasible and trustful method for obtaining DNA fingerprints, tracing the source of oil palm samples. With respect to the authenticity of materials or for solving legitimacy issues, accession belonging to each population by SSR markers could be distinguished, but additional SSR should be screened for improving this process.

12.
Blood ; 132(20): 2154-2165, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30181174

RESUMEN

Improving outcomes in multiple myeloma will involve not only development of new therapies but also better use of existing treatments. We performed RNA sequencing on samples from newly diagnosed patients enrolled in the phase 2 PADIMAC (Bortezomib, Adriamycin, and Dexamethasone Therapy for Previously Untreated Patients with Multiple Myeloma: Impact of Minimal Residual Disease in Patients with Deferred ASCT) study. Using synthetic annealing and the large margin nearest neighbor algorithm, we developed and trained a 7-gene signature to predict treatment outcome. We tested the signature in independent cohorts treated with bortezomib- and lenalidomide-based therapies. The signature was capable of distinguishing which patients would respond better to which regimen. In the CoMMpass data set, patients who were treated correctly according to the signature had a better progression-free survival (median, 20.1 months vs not reached; hazard ratio [HR], 0.40; confidence interval [CI], 0.23-0.72; P = .0012) and overall survival (median, 30.7 months vs not reached; HR, 0.41; CI, 0.21-0.80; P = .0049) than those who were not. Indeed, the outcome for these correctly treated patients was noninferior to that for those treated with combined bortezomib, lenalidomide, and dexamethasone, arguably the standard of care in the United States but not widely available elsewhere. The small size of the signature will facilitate clinical translation, thus enabling more targeted drug regimens to be delivered in myeloma.


Asunto(s)
Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Dexametasona/uso terapéutico , Doxorrubicina/uso terapéutico , Humanos , Estimación de Kaplan-Meier , Aprendizaje Automático , Mutación , Modelos de Riesgos Proporcionales , Análisis de Secuencia de ARN , Transcriptoma , Resultado del Tratamiento , Estados Unidos
13.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30061100

RESUMEN

Endogenous retroviruses (ERVs) have accumulated in vertebrate genomes and contribute to the complexity of gene regulation. KAP1 represses ERVs during development by its recruitment to their repetitive sequences through KRAB zinc-finger proteins (KZNFs), but little is known about the regulation of ERVs in adult tissues. We observed that KAP1 repression of HERVK14C was conserved in differentiated human cells and performed KAP1 knockout to obtain an overview of KAP1 function. Our results show that KAP1 represses ERVs (including HERV-T and HERV-S) and ZNF genes, both of which overlap with KAP1 binding sites and H3K9me3 in multiple cell types. Furthermore, this pathway is functionally conserved in adult human peripheral blood mononuclear cells. Cytosine methylation that acts on KAP1 regulated loci is necessary to prevent an interferon response, and KAP1-depletion leads to activation of some interferon-stimulated genes. Finally, loss of KAP1 leads to a decrease in H3K9me3 enrichment at ERVs and ZNF genes and an RNA-sensing response mediated through MAVS signaling. These data indicate that the KAP1-KZNF pathway contributes to genome stability and innate immune control in adult human cells.


Asunto(s)
Retrovirus Endógenos/genética , Inmunidad Innata/genética , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Sitios de Unión/genética , Metilación de ADN/genética , Retrovirus Endógenos/inmunología , Retrovirus Endógenos/patogenicidad , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Genoma Humano/inmunología , Histonas/genética , Histonas/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Regiones Promotoras Genéticas
14.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25209798

RESUMEN

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Asunto(s)
Genoma/genética , Hylobates/clasificación , Hylobates/genética , Cariotipo , Filogenia , Animales , Evolución Molecular , Hominidae/clasificación , Hominidae/genética , Humanos , Datos de Secuencia Molecular , Retroelementos/genética , Selección Genética , Terminación de la Transcripción Genética
15.
PLoS Genet ; 13(2): e1006587, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28187197

RESUMEN

The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21) specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC) and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL) for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.


Asunto(s)
Enfermedad Celíaca/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Proteínas de Dominio T Box/genética , Animales , Sitios de Unión/genética , Western Blotting , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Celíaca/metabolismo , Células Cultivadas , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Subunidad beta del Receptor de Interleucina-18/genética , Subunidad beta del Receptor de Interleucina-18/metabolismo , Ratones Noqueados , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Dominio T Box/metabolismo , Células TH1/metabolismo
16.
Genome Res ; 26(1): 130-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560630

RESUMEN

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Porcinos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Secuencia de Bases , Gatos/genética , Perros/genética , Femenino , Conversión Génica , Expresión Génica , Biblioteca de Genes , Orden Génico , Humanos , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
PLoS Pathog ; 13(8): e1006524, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837697

RESUMEN

Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness.


Asunto(s)
Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/patogenicidad , Sarcoma de Kaposi/virología , Microambiente Tumoral/fisiología , Virulencia/fisiología , Western Blotting , Línea Celular , Exoma/fisiología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiología , Humanos , MicroARNs/genética , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Sarcoma de Kaposi/metabolismo
18.
Nucleic Acids Res ; 45(16): 9398-9412, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934503

RESUMEN

In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Ribonucleasa III/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Células Madre Embrionarias/enzimología , Células HEK293 , Humanos , Ratones , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Regulación hacia Arriba
19.
J Med Internet Res ; 21(11): e14947, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31714252

RESUMEN

BACKGROUND: The lack of continuity between health-related quality of life (HRQoL) instruments designed for children and adults hinders change analysis with a life course approach. To resolve this gap, EuroQol (EQ) developed the EQ-5D-Youth (EQ-5D-Y), derived from the EQ-5D for adults. Few studies have assessed the metric properties of EQ-5D-Y in children with specific chronic conditions, and none have done so for children with type I diabetes mellitus (T1DM). OBJECTIVE: This study aimed to evaluate the acceptability, validity, reliability, and responsiveness of the EQ-5D-Y in children and adolescents with T1DM, when administered online. METHODS: Participants with T1DM were consecutively recruited from July to December 2014, from a list of potential candidates aged 8-19 years, who attended outpatient pediatric endocrinology units. Before every quarterly routine visit, participants received an email/telephone reminder to complete the online version of two generic HRQoL questionnaires: EQ-5D-Y and KIDSCREEN-27. The EQ-5D-Y measures five dimensions, from which an equally weighted summary score was constructed (range: 0-100). Completion rate and distribution statistics were calculated. Construct validity was evaluated through known group comparisons based on general health, acute diabetic decompensations, mental health, family function, and a multitrait, multimethod matrix between EQ-5D-Y and KIDSCREEN by using Spearman correlations. Construct validity hypotheses were stated a priori. Reliability was assessed with the intraclass correlation coefficient and responsiveness by testing changes over time and calculating the effect size. Reliability and responsiveness were tested among the stable and improved subsamples defined by a KIDSCREEN-10 index change of <4.5 points or ≥4.5 points, respectively, from the first to the fourth visit. RESULTS: Of the 136 participants, 119 (87.5%) responded to the EQ-5D-Y at the last visit. The dimensions that showed higher percentages of participants with problems were "having pain/discomfort" (34.6%) and "worried/sad/unhappy" (28.7%). The mean (SD) of the EQ-5D-Y summary score was 8.5 (10.9), with ceiling and floor effects of 50.7% and 0%, respectively. Statistically significant HRQoL differences between groups defined by their general health (excellent/very good and good/regular/bad) and mental health (Strengths and Difficulties Questionnaire score ≤15 and >16, respectively) were found in three EQ-5D-Y dimensions ("doing usual activities," "having pain/discomfort," and "feeling worried/sad/unhappy"), summary score (effect size for general health and mental health groups=0.7 and 1.5, respectively), and KIDSCREEN-10 index (effect size for general health and mental health groups=0.6 and 0.9, respectively). Significant differences in the EQ-5D-Y dimensions were also found according to acute diabetic decompensations in "looking after myself" (P=.005) and according to family function in "having pain/discomfort" (P=.03). Results of the multitrait, multimethod matrix confirmed three of the four relationships hypothesized as substantial (0.21, 0.58, 0.50, and 0.46). The EQ-5D-Y summary score presented an intraclass correlation coefficient of 0.83. Statistically significant change between visits was observed in the improved subsample, with an effect size of 0.7 (P<.001). CONCLUSIONS: These results support the use of the EQ-5D-Y administered online as an acceptable, valid, reliable, and responsive instrument for evaluating HRQoL in children and adolescents with T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1/psicología , Calidad de Vida/psicología , Adolescente , Adulto , Niño , Enfermedad Crónica , Femenino , Humanos , Internet , Masculino , Encuestas y Cuestionarios , Adulto Joven
20.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398555

RESUMEN

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Asunto(s)
Evolución Molecular , Especiación Genética , Genoma/genética , Gorilla gorilla/genética , Animales , Femenino , Regulación de la Expresión Génica , Variación Genética/genética , Genómica , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Filogenia , Pongo/genética , Proteínas/genética , Alineación de Secuencia , Especificidad de la Especie , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA