Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(9): 3829-3841, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37783788

RESUMEN

Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.


Asunto(s)
Alucinógenos , Resiliencia Psicológica , Humanos , Animales , Ratas , Psilocibina/farmacología , Psilocibina/uso terapéutico , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Núcleos Talámicos de la Línea Media , Serotonina , Conducta Compulsiva
2.
J Labelled Comp Radiopharm ; 67(2): 59-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171540

RESUMEN

The σ-1 receptor is a non-opioid transmembrane protein involved in various human pathologies including neurodegenerative diseases, inflammation, and cancer. The previously published ligand [18 F]FTC-146 is among the most promising tools for σ-1 molecular imaging by positron emission tomography (PET), with a potential for application in clinical diagnostics and research. However, the published six- or four-step synthesis of the tosyl ester precursor for its radiosynthesis is complicated and time-consuming. Herein, we present a simple one-step precursor synthesis followed by a one-step fluorine-18 labeling procedure that streamlines the preparation of [18 F]FTC-146. Instead of a tosyl-based precursor, we developed a one-step synthesis of the precursor analog AM-16 containing a chloride leaving group for the SN 2 reaction with 18 F-fluoride. 18 F-fluorination of AM-16 led to a moderate decay-corrected radiochemical yield (RCY = 7.5%) with molar activity (Am ) of 45.9 GBq/µmol. Further optimization of this procedure should enable routine radiopharmaceutical production of this promising PET tracer.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor Sigma-1 , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/química , Azepinas , Benzotiazoles , Radiofármacos
3.
Bioorg Med Chem Lett ; 80: 129088, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455802

RESUMEN

Tucatinib is a selective human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration (FDA) in April 2020 for HER2-positive lesions in metastatic breast cancer patients, including CNS metastases. In this article, we attempted to develop the first small molecule, blood-brain-barrier (BBB) penetrant HER2 PET imaging probe based on tucatinib. [11C]tucatinib was synthesized via a Stille-coupling from the respective trimethylstannyl precursor and its biodistribution was evaluated in NMRI nude mice bearing HER2-overexpressing human ovarian cancer cells (SKOV-3). No significant tumor accumulation was observed despite its high affinity for HER-2 receptors (IC50 = 6.9 nM). High liver and intestinal uptake indicate that [11C]tucatinib is too lipophilic to be used as a tumor targeting PET tracer. Therefore, chemical modifications of [11C]tucatinib are needed to increase the polarity for tumor imaging. Tucatinib as an FDA approved drug is still an interesting platform to develop the first small molecule HER2-selective PET tracer. The study highlights the differences between a drug, which needs to be effective, and an imaging agent, which is dependent on contrast.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Animales , Ratones , Femenino , Ratones Desnudos , Distribución Tisular , Receptor ErbB-2/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/patología
4.
J Labelled Comp Radiopharm ; 66(12): 393-399, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653688

RESUMEN

CRANAD-102, a selective near-infrared fluorescent tracer targeting soluble amyloid-ß (Aß) species, has recently attracted attention due to its potential to be used as a diagnostic tool for early stages of Alzheimer's disease (AD). Development of a positron emission tomography (PET) tracer based on CRANAD-102 could as such allow to noninvasively study soluble and protofibrillar species of Aß in humans. These soluble and protofibrillar species are thought to be responsible to cause AD. Within this work, we successfully 11 C-labeled CRANAD-102 via a Suzuki-Miyaura reaction in a RCС of 48 ± 9%, with a RCP of >96% and a molar activity (Am ) of 25 ± 7 GBq/µmol. Future studies have to be conducted to evaluate if [11 C]CRANAD-102 can be used to detect soluble protofibrils in vivo and if [11 C]CRANAD-102 can be used to detect AD earlier as possible with current diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colorantes Fluorescentes , Tomografía de Emisión de Positrones/métodos
5.
J Labelled Comp Radiopharm ; 66(1): 22-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36539610

RESUMEN

Pretargeting imaging has gained a lot of prominence, due to its excellent bioorthogonality and improved imaging contrast compared to conventional imaging. A new iodo tetrazine (Tz) derivative has been synthesized and further developed into the corresponding iodine-125 (125 I) analog (12), via the trimethylstannane precursor. Radiolabeling with either N-chlorosuccinimide or chloramine-T, in either MeCN or MeOH proceeded with a radiochemical conversion (RCC) of >80%. Subsequent deprotection only proved successful, among the tested conditions, when the radiolabeled Tz was stirred in 6-M HCl(aq.) at 60°C for 2.5 h. To the best of our knowledge, this is the first H-tetrazine labeled with iodine. In vivo investigations on the pretargeting ability of 12 are currently under way.


Asunto(s)
Compuestos Heterocíclicos , Radiofármacos , Radioisótopos de Yodo , Química Clic/métodos , Línea Celular Tumoral
6.
Molecules ; 28(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241742

RESUMEN

A technique to image α-synuclein (αSYN) fibrils in vivo is an unmet scientific and clinical need that would represent a transformative tool in the understanding, diagnosis, and treatment of various neurodegenerative diseases. Several classes of compounds have shown promising results as potential PET tracers, but no candidate has yet exhibited the affinity and selectivity required to reach clinical application. We hypothesized that the application of the rational drug design technique of molecular hybridization to two promising lead scaffolds could enhance the binding to αSYN up to the fulfillment of those requirements. By combining the structures of SIL and MODAG tracers, we developed a library of diarylpyrazoles (DAPs). In vitro evaluation through competition assays against [3H]SIL26 and [3H]MODAG-001 showed the novel hybrid scaffold to have preferential binding affinity for amyloid ß (Aß) over αSYN fibrils. A ring-opening modification on the phenothiazine building block to produce analogs with increased three-dimensional flexibility did not result in an improved αSYN binding but a complete loss of competition, as well as a significant reduction in Aß affinity. The combination of the phenothiazine and the 3,5-diphenylpyrazole scaffolds into DAP hybrids did not generate an enhanced αSYN PET tracer lead compound. Instead, these efforts identified a scaffold for promising Aß ligands that may be relevant to the treatment and monitoring of Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Amiloide
7.
Chemistry ; 28(61): e202201847, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35851967

RESUMEN

Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro Coloide , Química Clic , Línea Celular Tumoral , Anticuerpos Monoclonales
8.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807267

RESUMEN

Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.


Asunto(s)
Radioisótopos de Flúor , Compuestos Heterocíclicos , Halogenación , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones/métodos , Radioquímica , Radiofármacos
9.
J Neurochem ; 159(4): 660-689, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34532856

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.


Asunto(s)
Neuroimagen/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , alfa-Sinucleína/metabolismo
10.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494416

RESUMEN

Pretargeted nuclear imaging for the diagnosis of various cancers is an emerging and fast developing field. The tetrazine ligation is currently considered the most promising reaction in this respect. Monoclonal antibodies are often the preferred choice as pretargeting vector due to their outstanding targeting properties. In this work, we evaluated the performance of [64Cu]Cu-NOTA-PEG7-H-Tz using a setup we previously used for [111In]In-DOTA-PEG11-BisPy-Tz, thereby allowing for comparison of the performance of these two promising pretargeting imaging agents. The evaluation included a comparison of the physicochemical properties of the compounds and their performance in an ex vivo blocking assay. Finally, [64Cu]Cu-NOTA-PEG7-H-Tz was evaluated in a pretargeted imaging study and compared to [111In]In-DOTA-PEG11-BisPy-Tz. Despite minor differences, this study indicated that both evaluated tetrazines are equally suited for pretargeted imaging.


Asunto(s)
Neoplasias del Colon , Tomografía de Emisión de Positrones , Radioinmunoterapia , Radiofármacos , Animales , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Neoplasias del Colon/radioterapia , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Imaging ; 19: 1536012120936397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32907484

RESUMEN

This meeting report summarizes a Consultants Meeting that was held at International Atomic Energy Agency headquarters in Vienna to provide an update on radionuclide imaging for neuroscience applications.


Asunto(s)
Cintigrafía/tendencias , Humanos , Neuroimagen , Neurociencias , Radiofármacos/química , Investigación Biomédica Traslacional
12.
Eur J Nucl Med Mol Imaging ; 47(2): 355-365, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31606832

RESUMEN

PURPOSE: The serotonin receptor subtype 2A antagonist (5-HT2AR) (R)-[18F]MH.MZ has in preclinical studies been identified as a promising PET imaging agent for quantification of cerebral 5-HT2ARs. It displays a very similar selectivity profile as [11C]MDL 100907, one of the most selective compounds identified thus far for the 5-HT2AR. As [11C]MDL 100907, (R)-[18F]MH.MZ also displays slow brain kinetics in various animal models; however, the half-life of fluorine-18 allows for long scan times and consequently, a more precise determination of 5-HT2AR binding could still be feasible. In this study, we aimed to evaluate the potential of (R)-[18F]MH.MZ PET to image and quantify the 5-HT2AR in the human brain in vivo. METHODS: Nine healthy volunteers underwent (R)-[18F]MH.MZ PET at baseline and four out of these also received a second PET scan, after ketanserin pretreatment. Regional time-activity curves of 17 brain regions were analyzed before and after pretreatment. We also investigated radiometabolism, time-dependent stability of outcomes measures, specificity of (R)-[18F]MH.MZ 5-HT2AR binding, and performance of different kinetic modeling approaches. RESULTS: Highest uptake was determined in 5-HT2AR rich regions with a BPND of approximately 1.5 in cortex regions. No radiometabolism was observed. 1TCM and 2TCM resulted in similar outcome measure, whereas reference tissue models resulted in a small, but predictable bias. (R)-[18F]MH.MZ binding conformed to the known distribution of 5-HT2AR and could be blocked by pretreatment with ketanserin. Moreover, outcomes measures were stable after 100-110 min. CONCLUSION: (R)-[18F]MH.MZ is a suitable PET tracer to image and quantify the 5-HT2AR system in humans. In comparison with [11C]MDL 100907, faster and more precise outcome measure could be obtained using (R)-[18F]MH.MZ. We believe that (R)-[18F]MH.MZ has the potential to become the antagonist radiotracer of choice to investigate the human 5-HT2AR system.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor de Serotonina 5-HT2A , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Humanos , Cinética
13.
J Labelled Comp Radiopharm ; 63(2): 46-55, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31674045

RESUMEN

The serotonin 7 (5-HT7 ) receptor is suggested to be involved in a broad variety of CNS disorders, but very few in vivo tools exist to study this important target. Molecular imaging with positron emission tomography (PET) would enable an in vivo characterization of the 5-HT7 receptor. However, no clinical PET radiotracer exists for this receptor, and thus we aimed to develop such a tracer. In this study, we present the preclinical evaluation of [11 C]Cimbi-701. Cimbi-701 was synthesized in a one-step procedure starting from SB-269970. Its selectivity profile was determined using an academic screening platform (NIMH Psychoactive Drug Screening Program). Successful radiolabeling of [11 C]Cimbi-701 and subsequent in vivo evaluation was conducted in rats, pigs and baboon. In vivo specificity was investigated by 5-HT7 and σ receptor blocking studies. P-gp efflux transporter dependency was investigated using elacridar. [11 C]Cimbi-701 could successfully be synthesized. Selectivity profiling revealed high affinity for the 5-HT7 (Ki = 18 nM), σ-1 (Ki = 9.2 nM) and σ-2 (Ki = 1.6 nM) receptors. In rats, [11 C]Cimbi-701 acted as a strong P-gp substrate. After P-gp inhibition, rat brain uptake could specifically be blocked by 5-HT7 and σ receptor ligands. In pig, high brain uptake and specific 5-HT7 and σ-receptor binding was found for [11 C]Cimbi-701 without P-gp inhibition. Finally, low brain uptake was found in baboons. Both the specific σ-receptor binding and the low brain uptake of [11 C]Cimbi-701 displayed in baboon discouraged further translation to humans. Instead, we suggest exploration of this structural class as results indicate that selective 5-HT7 receptor imaging might be possible when more selective non-P-gp substrates are identified.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de Serotonina 5-HT2/metabolismo , Animales , Técnicas de Química Sintética , Masculino , Radioquímica , Ratas , Porcinos , Distribución Tisular
14.
Molecules ; 25(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979070

RESUMEN

The bioorthogonal reaction between a tetrazine and strained transcyclooctene (TCO) has garnered success in pretargeted imaging. This reaction was first validated in nuclear imaging using an 111In-labeled 1,4,7,10tetraazacyclododecane1,4,7,10tetraacetic acid (DOTA)-linked bispyridyl tetrazine (Tz) ([111In]In-DOTA-PEG11-Tz) and a TCO functionalized CC49 antibody. Given the initial success of this Tz, it has been paired with TCO functionalized small molecules, diabodies, and affibodies for in vivo pretargeted studies. Furthermore, the single photon emission tomography (SPECT) radionuclide, 111In, has been replaced with the ß-emitter, 177Lu and α-emitter, 212Pb, both yielding the opportunity for targeted radiotherapy. Despite use of the 'universal chelator', DOTA, there is yet to be an analogue suitable for positron emission tomography (PET) using a widely available radionuclide. Here, a 68Ga-labeled variant ([68Ga]Ga-DOTA-PEG11-Tz) was developed and evaluated using two different in vivo pretargeting systems (Aln-TCO and TCO-CC49). Small animal imaging and ex vivo biodistribution studies were performed and revealed target specific uptake of [68Ga]Ga-DOTA-PEG11-Tz in the bone (3.7 %ID/g, knee) in mice pretreated with Aln-TCO and tumor specific uptake (5.8 %ID/g) with TCO-CC49 in mice bearing LS174 xenografts. Given the results of this study, [68Ga]Ga-DOTA-PEG11-Tz can serve as an alternative to [111In]In-DOTA-PEG11-Tz.


Asunto(s)
Radioisótopos de Galio/análisis , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
15.
Molecules ; 25(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245032

RESUMEN

The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer's disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in ß2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7ß2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.


Asunto(s)
Fluorodesoxiglucosa F18 , Radioisótopos de Yodo , Trazadores Radiactivos , Radiofármacos , Tiofenos/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Animales , Autorradiografía , Fluorodesoxiglucosa F18/química , Radioisótopos de Yodo/química , Estructura Molecular , Tomografía de Emisión de Positrones , Unión Proteica , Multimerización de Proteína , Radiofármacos/química , Porcinos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
16.
Bioorg Med Chem Lett ; 29(8): 986-990, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30795854

RESUMEN

Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11C-labeled tetrazine ([11C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [11C]AE-1. However, brain imaging in pig indicated that the tracer crossed the blood-brain-barrier. Hence, we suggest that this tetrazine scaffold could be used as a starting point for the development of pretargeted brain imaging, which has so far been a challenging task.


Asunto(s)
Radioisótopos de Carbono/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Tetrazoles/química , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono/metabolismo , Difosfonatos/química , Marcaje Isotópico , Ratones , Neoplasias/diagnóstico por imagen , Ácido Poliglutámico/química , Radiofármacos/metabolismo , Porcinos , Tetrazoles/metabolismo , Distribución Tisular
17.
European J Org Chem ; 2019(8): 1722-1725, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31007573

RESUMEN

Fluorine-18 possesses outstanding decay characteristics for positron emission tomography (PET) imaging. Therefore, it is ideally suited for clinical applications. As such, improved strategies to incorporate fluorine-18 into bioactive molecules are of utmost importance. Indirect 18F-labeling with amino-functionalized synthons is a convenient and versatile approach to synthesize a broad variety of PET tracers. Herein, we report a method to convert 18F-labeled azides to primary amines by means of the Staudinger reduction. Aliphatic and aromatic 18F-labeled azides were converted into the corresponding amines with high conversion yields. The method was easily automated. From a broader perspective, the applied strategy results in two useful synthons from a single precursor and thus increases the flexibility to label diverse chemical scaffolds with minimal synthetic effort.

18.
J Labelled Comp Radiopharm ; 62(1): 34-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414212

RESUMEN

So far, no suitable 5-HT7 R radioligand exists for clinical positron emission tomography (PET) imaging. [18 F]2FP3 was first tested in vivo in cats, and the results were promising for further evaluations. Here, we evaluate the radioligand in pigs and non-human primates (NHPs). Furthermore, we investigate species differences in 5-HT7 R binding with [3 H]SB-269970 autoradiography in post-mortem pig, NHP, and human brain tissue. Specific binding of [18 F]2FP3 was investigated by intravenous administration of the 5-HT7 R specific antagonist SB-269970. [3 H]SB-269970 autoradiography was performed as previously described. [18 F]2FP3 was synthesized in an overall yield of 35% to 45%. High brain uptake of the tracer was found in both pigs and NHPs; however, pretreatment with SB-269970 only resulted in decreased binding of 20% in the thalamus, a 5-HT7 R-rich region. Autoradiography on post-mortem pig, NHP, and human tissues revealed that specific binding of [3 H]SB-269970 was comparable in the thalamus of pig and NHP. Despite the high uptake of [18 F]2FP3 in both species, the binding could only be blocked to a limited degree with the 5-HT7 R antagonists. We speculate that the affinity of the radioligand is too low for imaging the 5-HT7 Rs in vivo and that part of the PET signal arises from targets other than the 5-HT7 R.


Asunto(s)
Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Radiofármacos/farmacocinética , Antagonistas de la Serotonina/química , Animales , Femenino , Macaca mulatta , Masculino , Fenoles/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Receptores de Serotonina/metabolismo , Sulfonamidas/farmacocinética , Porcinos
19.
Bioorg Med Chem Lett ; 27(2): 319-322, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27908763

RESUMEN

In drug discovery, lipophilicity is a key parameter for drug optimization. Lipophilicity determinations can be both work and time consuming, especially for non-UV active compounds. Herein, an improved and simple 1H NMR-based method is described to estimate the lipophilicity at physiological pH (logD7.4) in 1-octanol and D2O buffer. The method can be applied to both UV and non-UV active compounds. In addition, neither calibration curves nor internal/external standards are needed. We have demonstrated that logD7.4 can be accurately measured using 1H NMR for compounds within the logD7.4 interval between 0.7 and 3.3. The method was also compared to a previously described HPLC method.


Asunto(s)
Preparaciones Farmacéuticas/química , 1-Octanol/química , Óxido de Deuterio/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Protones por Resonancia Magnética
20.
J Labelled Comp Radiopharm ; 60(12): 586-591, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28856700

RESUMEN

An agonist PET tracer is of key interest for the imaging of the 5-HT2A receptor, as exemplified by the previously reported success of [11 C]Cimbi-36. Fluorine-18 holds several advantages over carbon-11, making it the radionuclide of choice for clinical purposes. In this respect, an 18 F-labelled agonist 5-HT2A receptor (5-HT2A R) tracer is highly sought after. Herein, we report a 2-step, 1-pot labelling methodology of 2 tracer candidates. Both ligands display high in vitro affinities for the 5-HT2A R. The compounds were synthesised from easily accessible labelling precursors, and radiolabelled in acceptable radiochemical yields, sufficient for in vivo studies in domestic pigs. PET images partially conformed to the expected brain distribution of the 5-HT2A R; a notable exception however being significant uptake in the striatum and thalamus. Additionally, a within-scan displacement challenge with a 5-HT2A R antagonist was unsuccessful, indicating that the tracers cannot be considered optimal for neuroimaging of the 5-HT2A R.


Asunto(s)
Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Halogenación , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Animales , Técnicas de Química Sintética , Femenino , Neuroimagen , Tomografía de Emisión de Positrones , Radioquímica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA