Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(7): 2701-2706, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30692251

RESUMEN

Glutamate is the most abundant excitatory neurotransmitter, present at the bulk of cortical synapses, and participating in many physiologic and pathologic processes ranging from learning and memory to stroke. The tripeptide, glutathione, is one-third glutamate and present at up to low millimolar intracellular concentrations in brain, mediating antioxidant defenses and drug detoxification. Because of the substantial amounts of brain glutathione and its rapid turnover under homeostatic control, we hypothesized that glutathione is a relevant reservoir of glutamate and could influence synaptic excitability. We find that drugs that inhibit generation of glutamate by the glutathione cycle elicit decreases in cytosolic glutamate and decreased miniature excitatory postsynaptic potential (mEPSC) frequency. In contrast, pharmacologically decreasing the biosynthesis of glutathione leads to increases in cytosolic glutamate and enhanced mEPSC frequency. The glutathione cycle can compensate for decreased excitatory neurotransmission when the glutamate-glutamine shuttle is inhibited. Glutathione may be a physiologic reservoir of glutamate neurotransmitter.


Asunto(s)
Glutatión/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Homeostasis , Neuronas/fisiología , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
2.
Nat Cell Biol ; 7(7): 665-74, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951807

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH-Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO-S-nitrosylation-GAPDH-Siah1 cascade may represent an important molecular mechanism of cytotoxicity.


Asunto(s)
Apoptosis/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/fisiología , Proteínas Nucleares/metabolismo , S-Nitrosotioles/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Cisteína/metabolismo , Citoplasma/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Modelos Biológicos , Mutación , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo II , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , S-Nitrosoglutatión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
3.
Biochem Biophys Res Commun ; 409(4): 596-602, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21539809

RESUMEN

Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.


Asunto(s)
Ácido Glutámico/biosíntesis , Glutatión/metabolismo , Neuronas/metabolismo , Animales , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Hipocampo/citología , Imidazolinas/farmacología , Isoxazoles/farmacología , Ratones , Piroglutamato Hidrolasa/antagonistas & inhibidores , Piroglutamato Hidrolasa/metabolismo , Ratas , gamma-Glutamiltransferasa/antagonistas & inhibidores , gamma-Glutamiltransferasa/metabolismo
4.
Cell Chem Biol ; 28(4): 537-545.e4, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33472023

RESUMEN

Neuroinflammation characterizes multiple neurologic diseases, including primary inflammatory conditions such as multiple sclerosis and classical neurodegenerative diseases. Aberrant activation of the innate immune system contributes to disease progression, but drugs modulating innate immunity, particularly within the central nervous system (CNS), are lacking. The CNS-penetrant natural product bryostatin-1 attenuates neuroinflammation by targeting innate myeloid cells. Supplies of natural bryostatin-1 are limited, but a recent scalable good manufacturing practice (GMP) synthesis has enabled access to it and its analogs (bryologs), the latter providing a path to more efficacious, better tolerated, and more accessible agents. Here, we show that multiple synthetically accessible bryologs replicate the anti-inflammatory effects of bryostatin-1 on innate immune cells in vitro, and a lead bryolog attenuates neuroinflammation in vivo, actions mechanistically dependent on protein kinase C (PKC) binding. Our findings identify bryologs as promising drug candidates for targeting innate immunity in neuroinflammation and create a platform for evaluation of synthetic PKC modulators in neuroinflammatory diseases.


Asunto(s)
Brioestatinas/farmacología , Diseño de Fármacos , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Brioestatinas/síntesis química , Brioestatinas/química , Femenino , Inmunidad Innata/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Embarazo , Proteína Quinasa C-delta/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estereoisomerismo
5.
Neuron ; 51(4): 431-40, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16908409

RESUMEN

Dexras1 is a 30 kDa G protein in the Ras subfamily whose discovery was based on its pronounced inducibility by the glucocorticoid dexamethasone. It binds to neuronal nitric oxide synthase (nNOS) via the adaptor protein CAPON, eliciting S-nitrosylation and activation of Dexras1. We report that Dexras1 binds to the peripheral benzodiazepine receptor-associated protein (PAP7), a protein of unknown function that binds to cyclic AMP-dependent protein kinase and the peripheral benzodiazepine receptor. PAP7 in turn binds to the divalent metal transporter (DMT1), an iron import channel. We have identified a signaling cascade in neurons whereby stimulation of NMDA receptors activates nNOS, leading to S-nitrosylation and activation of Dexras1, which, via PAP7 and DMT1, physiologically induces iron uptake. As selective iron chelation prevents NMDA neurotoxicity in cortical cultures, the NMDA-NO-Dexras1-PAP7-DMT1-iron uptake signaling cascade also appears to mediate NMDA neurotoxicity.


Asunto(s)
Homeostasis/fisiología , Hierro/metabolismo , Óxido Nítrico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Proteínas ras/fisiología , Proteínas Adaptadoras Transductoras de Señales , Aldehídos/farmacología , Animales , Western Blotting/métodos , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Homeostasis/efectos de los fármacos , Humanos , Hidrazonas/farmacología , Inmunoprecipitación/métodos , Quelantes del Hierro/farmacología , Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana , Ratones , Ratones Noqueados , Modelos Biológicos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de GABA-A/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección/métodos
6.
Neuron ; 40(1): 129-37, 2003 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-14527438

RESUMEN

Carbon monoxide (CO) is a putative gaseous neurotransmitter that lacks vesicular storage and must be synthesized rapidly following neuronal depolarization. We show that the biosynthetic enzyme for CO, heme oxygenase-2 (HO2), is activated during neuronal stimulation by phosphorylation by CK2 (formerly casein kinase 2). Phorbol ester treatment of hippocampal cultures results in the phosphorylation and activation of HO2 by CK2, implicating protein kinase C (PKC) in CK2 stimulation. Odorant treatment of olfactory receptor neurons augments HO2 phosphorylation and activity as well as cyclic guanosine monophosphate (cGMP) levels, with all of these effects selectively blocked by CK2 inhibitors. Likewise, CO-mediated nonadrenergic, noncholinergic (NANC) relaxation of the internal anal sphincter requires CK2 activity. Our findings provide a molecular mechanism for the rapid neuronal activation of CO biosynthesis, as required for a gaseous neurotransmitter.


Asunto(s)
Monóxido de Carbono/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transmisión Sináptica/fisiología , Animales , Células COS , Quinasa de la Caseína II , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Ratones , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/enzimología , Técnicas de Cultivo de Órganos , Ésteres del Forbol/farmacología , Fosforilación/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos
7.
PLoS One ; 8(4): e58996, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23634200

RESUMEN

One of the goals in neuroscience is to obtain tractable laboratory cultures that closely recapitulate in vivo systems while still providing ease of use in the lab. Because neurons can exist in the body over a lifetime, long-term culture systems are necessary so as to closely mimic the physiological conditions under laboratory culture conditions. Ideally, such a neuronal organoid culture would contain multiple cell types, be highly differentiated, and have a high density of interconnected cells. However, before these types of cultures can be created, certain problems associated with long-term neuronal culturing must be addressed. We sought to develop a new protocol which may further prolong the duration and integrity of E18 rat hippocampal cultures. We have developed a protocol that allows for culturing of E18 hippocampal neurons at high densities for more than 120 days. These cultured hippocampal neurons are (i) well differentiated with high numbers of synapses, (ii) anchored securely to their substrate, (iii) have high levels of functional connectivity, and (iv) form dense multi-layered cellular networks. We propose that our culture methodology is likely to be effective for multiple neuronal subtypes-particularly those that can be grown in Neurobasal/B27 media. This methodology presents new avenues for long-term functional studies in neurons.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hipocampo/citología , Neuronas/citología , Organoides/citología , Animales , Calcio/metabolismo , Recuento de Células , Diferenciación Celular , Medios de Cultivo/química , Espacio Intracelular/metabolismo , Ratas , Sinapsis/metabolismo , Factores de Tiempo
8.
Neuron ; 71(1): 131-41, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21745643

RESUMEN

PSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications. In support of this hypothesis, physiologically produced NO inhibits PSD-95 palmitoylation in granule cells of the cerebellum, decreasing the number of PSD-95 clusters at synaptic sites. Further, decreased palmitoylation, as seen in heterologous cells treated with 2-bromopalmitate or in ZDHHC8 knockout mice deficient in a PSD-95 palmitoyltransferase, results in increased PSD-95 nitrosylation. These data support a model in which NMDA-mediated production of NO regulates targeting of PSD-95 to synapses via mutually competitive cysteine modifications. Thus, differential modification of cysteines may represent a general paradigm in signal transduction.


Asunto(s)
Guanilato-Quinasas/metabolismo , Lipoilación/genética , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Sinapsis/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Homólogo 4 de la Proteína Discs Large , Células HEK293 , Humanos , Lipoilación/efectos de los fármacos , Ratones , Ratones Noqueados , N-Metilaspartato/farmacología , Palmitatos/farmacología
9.
Nat Cell Biol ; 12(11): 1094-100, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20972425

RESUMEN

S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Histona Desacetilasa 2/metabolismo , Proteínas Nucleares/metabolismo , Sirtuina 1/metabolismo , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores
10.
Proc Natl Acad Sci U S A ; 103(10): 3887-9, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505364

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where degradation of Siah targets elicits cell death. R-(-)-Deprenyl (deprenyl) ameliorates the progression of disability in early Parkinson's disease and also has neuroprotective actions. We show that deprenyl and a related agent, TCH346, in subnanomolar concentrations, prevent S-nitrosylation of GAPDH, the binding of GAPDH to Siah, and nuclear translocation of GAPDH. In mice treated with the dopamine neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), low doses of deprenyl prevent binding of GAPDH and Siah1 in the dopamine-enriched corpus striatum.


Asunto(s)
Apoptosis/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Animales , Antiparkinsonianos/farmacología , Apoptosis/fisiología , Línea Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Humanos , Técnicas In Vitro , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Masculino , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Óxido Nítrico/metabolismo , Proteínas Nucleares/fisiología , Oxepinas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Ubiquitina-Proteína Ligasas/fisiología
11.
Proc Natl Acad Sci U S A ; 99(5): 3270-5, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11854472

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1, EC ), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Excessive activation of PARP-1 by cellular insults depletes its substrate beta-nicotinamide adenine dinucleotide and ATP, leading to cell death. PARP-1-deficient (PARP-1-/-) mice are protected from several forms of inflammation. In the present study, we demonstrate in PARP-1-/- glial cells a loss of several stress-activated transcription factors as well as decreased expression of genes for cytokines and cellular adhesion molecules. We also show that augmented expression of some of these genes is independent of PARP-1 catalytic activity. These findings indicate that PARP-1 plays a pivotal role in the initial inflammatory response by modulating transcription of inflammation-linked genes.


Asunto(s)
Regulación de la Expresión Génica , FN-kappa B/metabolismo , Neuroglía/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Catálisis , Células Cultivadas , Citocinas/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Unión al ADN Específico de las Células Eritroides , Femenino , Factor C1 de la Célula Huésped , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitógenos/farmacología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo II , Factor 1 de Transcripción de Unión a Octámeros , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/fisiología , Factor de Transcripción STAT1 , Factor de Transcripción Sp1/metabolismo , Estrés Fisiológico , Transactivadores/metabolismo , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA