Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38634224

RESUMEN

In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.


Asunto(s)
Carotenoides , Pinzones , Mitocondrias , Animales , Carotenoides/metabolismo , Masculino , Pinzones/fisiología , Pinzones/metabolismo , Mitocondrias/metabolismo , Respiración de la Célula , Consumo de Oxígeno
2.
Trends Genet ; 36(6): 403-414, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32396834

RESUMEN

In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.


Asunto(s)
Evolución Biológica , Núcleo Celular/genética , Genoma Mitocondrial , Mutación , Animales , Humanos
3.
J Exp Biol ; 225(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35695335

RESUMEN

The shared-pathway hypothesis offers a cellular explanation for the connection between ketocarotenoid pigmentation and individual quality. Under this hypothesis, ketocarotenoid metabolism shares cellular pathways with mitochondrial oxidative phosphorylation such that red carotenoid-based coloration is inextricably linked mitochondrial function. To test this hypothesis, we exposed Tigriopus californicus copepods to a mitochondrially targeted protonophore, 2,4-dinitrophenol (DNP), to induce proton leak in the inner mitochondrial membranes. We then measured whole-animal metabolic rate and ketocarotenoid accumulation. As observed in prior studies of vertebrates, we observed that DNP treatment of copepods significantly increased respiration and that DNP-treated copepods accumulated more ketocarotenoid than control animals. Moreover, we observed a relationship between ketocarotenoid concentration and metabolic rate, and this association was strongest in DNP-treated copepods. These data support the hypothesis that ketocarotenoid and mitochondrial metabolism are biochemically intertwined. Moreover, these results corroborate observations in vertebrates, perhaps suggesting a fundamental connection between ketocarotenoid pigmentation and mitochondrial function that should be explored further.


Asunto(s)
Carotenoides , Copépodos , Animales , Carotenoides/metabolismo , Mitocondrias/metabolismo , Pigmentación
4.
Proc Natl Acad Sci U S A ; 116(34): 16927-16932, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371501

RESUMEN

Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host-pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.


Asunto(s)
Bacterias , Infecciones Bacterianas , Evolución Biológica , Enfermedades de las Aves/microbiología , Resistencia a la Enfermedad , Modelos Biológicos , Pájaros Cantores/microbiología , Animales , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/veterinaria , América del Norte , Factores de Virulencia/metabolismo
5.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682910

RESUMEN

Unlike humans, some animals have evolved a physiological ability to deposit porphyrins, which are pigments produced during heme synthesis in cells, in the skin and associated integument such as hair. Given the inert nature and easiness of collection of hair, animals that present porphyrin-based pigmentation constitute unique models for porphyrin analysis in biological samples. Here we present the development of a simple, rapid, and efficient analytical method for four natural porphyrins (uroporphyrin I, coproporphyrin I, coproporphyrin III and protoporphyrin IX) in the Southern flying squirrel Glaucomys volans, a mammal with hair that fluoresces and that we suspected has porphyrin-based pigmentation. The method is based on capillary liquid chromatography-mass spectrometry (CLC-MS), after an extraction procedure with formic acid and acetonitrile. The resulting limits of detection (LOD) and quantification (LOQ) were 0.006-0.199 and 0.021-0.665 µg mL-1, respectively. This approach enabled us to quantify porphyrins in flying squirrel hairs at concentrations of 3.6-353.2 µg g-1 with 86.4-98.6% extraction yields. This method provides higher simplicity, precision, selectivity, and sensitivity than other methods used to date, presenting the potential to become the standard technique for porphyrin analysis.


Asunto(s)
Porfirinas , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Cabello/química , Mamíferos , Espectrometría de Masas , Porfirinas/química
6.
Mol Biol Evol ; 37(5): 1317-1328, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31930402

RESUMEN

Unlike wild and domestic canaries (Serinus canaria), or any of the three dozen species of finches in genus Serinus, the domestic urucum breed of canaries exhibits bright red bills and legs. This novel trait offers a unique opportunity to understand the mechanisms of bare-part coloration in birds. To identify the mutation producing the colorful phenotype, we resequenced the genome of urucum canaries and performed a range of analyses to search for genotype-to-phenotype associations across the genome. We identified a nonsynonymous mutation in the gene BCO2 (beta-carotene oxygenase 2, also known as BCDO2), an enzyme involved in the cleavage and breakdown of full-length carotenoids into short apocarotenoids. Protein structural models and in vitro functional assays indicate that the urucum mutation abrogates the carotenoid-cleavage activity of BCO2. Consistent with the predicted loss of carotenoid-cleavage activity, urucum canaries tended to have increased levels of full-length carotenoid pigments in bill tissue and reduced levels of carotenoid-cleavage products (apocarotenoids) in retinal tissue compared with other breeds of canaries. We hypothesize that carotenoid-based bare-part coloration might be readily gained, modified, or lost through simple switches in the enzymatic activity or regulation of BCO2 and this gene may be an important mediator in the evolution of bare-part coloration among bird species.


Asunto(s)
Canarios/genética , Carotenoides/metabolismo , Pigmentación/genética , Sustitución de Aminoácidos , Animales , Canarios/metabolismo , Genes Recesivos , Oxigenasas de Función Mixta/metabolismo , Fenotipo
7.
Bioessays ; 40(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29405334

RESUMEN

The fitness of a eukaryote hinges on the coordinated function of the products of its nuclear and mitochondrial genomes in achieving oxidative phosphorylation (OXPHOS). I propose that sexual selection plays a key role in the maintenance of mitonuclear coadaptation across generations because it enables pre-zygotic sorting for coadapted mitonuclear genotypes. At each new generation, sexual reproduction creates new combinations of nuclear and mitochondrial genes, and the potential arises for mitonuclear incompatibilities and reduced fitness. In reviewing the literature, I hypothesize that individuals engaged in mate choice select partners with correct species-typical mitochondrial and nuclear genotypes as well as individuals with highly functional cellular respiration. The implication is that mate choice for compatible nuclear and mitochondrial genes can play a significant role in generating the patterns of ornamentation and preferences observed in animals. A number of testable predictions emerge from this mitonuclear compatibility hypothesis of sexual selection.


Asunto(s)
Núcleo Celular/genética , Genoma Mitocondrial , Preferencia en el Apareamiento Animal/fisiología , Mitocondrias/genética , Fosforilación Oxidativa , Selección Genética , Animales , Núcleo Celular/metabolismo , Patos , Evolución Molecular , Femenino , Pinzones , Genotipo , Masculino , Mitocondrias/metabolismo , Modelos Biológicos , Reproducción , Spheniscidae
8.
Proc Natl Acad Sci U S A ; 114(20): 5219-5224, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28465440

RESUMEN

Yellow, orange, and red coloration is a fundamental aspect of avian diversity and serves as an important signal in mate choice and aggressive interactions. This coloration is often produced through the deposition of diet-derived carotenoid pigments, yet the mechanisms of carotenoid uptake and transport are not well-understood. The white recessive breed of the common canary (Serinus canaria), which carries an autosomal recessive mutation that renders its plumage pure white, provides a unique opportunity to investigate mechanisms of carotenoid coloration. We carried out detailed genomic and biochemical analyses comparing the white recessive with yellow and red breeds of canaries. Biochemical analysis revealed that carotenoids are absent or at very low concentrations in feathers and several tissues of white recessive canaries, consistent with a genetic defect in carotenoid uptake. Using a combination of genetic mapping approaches, we show that the white recessive allele is due to a splice donor site mutation in the scavenger receptor B1 (SCARB1; also known as SR-B1) gene. This mutation results in abnormal splicing, with the most abundant transcript lacking exon 4. Through functional assays, we further demonstrate that wild-type SCARB1 promotes cellular uptake of carotenoids but that this function is lost in the predominant mutant isoform in white recessive canaries. Our results indicate that SCARB1 is an essential mediator of the expression of carotenoid-based coloration in birds, and suggest a potential link between visual displays and lipid metabolism.


Asunto(s)
Carotenoides/fisiología , Plumas/metabolismo , Lipoproteínas HDL/metabolismo , Receptores de Lipoproteína/metabolismo , Receptores Depuradores de Clase B/metabolismo , Pájaros Cantores/fisiología , Animales , Carotenoides/genética , Carotenoides/metabolismo , Dieta , Pigmentación/fisiología , Receptores Depuradores de Clase B/genética , Pájaros Cantores/genética
9.
Proc Biol Sci ; 286(1911): 20191354, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551059

RESUMEN

Carotenoid coloration is widely recognized as a signal of individual condition in various animals, but despite decades of study, the mechanisms that link carotenoid coloration to condition remain unresolved. Most birds with red feathers convert yellow dietary carotenoids to red carotenoids in an oxidation process requiring the gene encoding the putative cytochrome P450 enzyme CYP2J19. Here, we tested the hypothesis that the process of carotenoid oxidation and feather pigmentation is functionally linked to mitochondrial performance. Consistent with this hypothesis, we observed high levels of red ketolated carotenoids associated with the hepatic mitochondria of moulting wild house finches (Haemorhous mexicanus), and upon fractionation, we found the highest concentration of ketolated carotenoids in the inner mitochondrial membrane. We further found that the redness of growing feathers was positively related to the performance of liver mitochondria. Structural modelling of CYP2J19 supports a direct role of this protein in carotenoid ketolation that may be functionally linked to cellular respiration. These observations suggest that feather coloration serves as a signal of core functionality through inexorable links to cellular respiration in the mitochondria.


Asunto(s)
Plumas , Pinzones/fisiología , Mitocondrias/fisiología , Pigmentación , Animales , Sistema Enzimático del Citocromo P-450 , Mitocondrias/metabolismo , Muda , Passeriformes
10.
J Exp Biol ; 222(Pt 6)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30877227

RESUMEN

Carotenoid-based coloration in birds is widely considered an honest signal of individual condition, but the mechanisms responsible for condition dependency in such ornaments remain debated. Currently, the most common explanation for how carotenoid coloration serves as a reliable signal of condition is the resource trade-off hypothesis, which proposes that use of carotenoids for ornaments reduces their availability for use by the immune system or for protection from oxidative damage. However, two main assumptions of the hypothesis remain in question: whether carotenoids boost the performance of internal processes such as immune and antioxidant defenses, and whether allocating carotenoids to ornaments imposes a trade-off with such benefits. In this study, we tested these two fundamental assumptions using types of domestic canary (Serinus canaria domestica) that enable experiments in which carotenoid availability and allocation can be tightly controlled. Specifically, we assessed metrics of immune and antioxidant performance in three genetic variants of the color-bred canary that differ only in carotenoid phenotype: ornamented, carotenoid-rich yellow canaries; unornamented, carotenoid-rich 'white dominant' canaries; and unornamented, carotenoid-deficient 'white recessive' canaries. The resource trade-off hypothesis predicts that carotenoid-rich individuals should outperform carotenoid-deficient individuals and that birds that allocate carotenoids to feathers should pay a cost in the form of reduced immune function or greater oxidative stress compared with unornamented birds. We found no evidence to support either prediction; all three canary types performed equally across measures. We suggest that testing alternative mechanisms for the honesty of carotenoid-based coloration should be a key focus of future studies of carotenoid-based signaling in birds.


Asunto(s)
Comunicación Animal , Antioxidantes/metabolismo , Canarios/fisiología , Carotenoides/metabolismo , Plumas/fisiología , Inmunidad Innata , Pigmentación , Animales , Canarios/genética , Canarios/inmunología , Color , Señales (Psicología) , Femenino , Masculino
11.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311238

RESUMEN

While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host.


Asunto(s)
Enfermedades de las Aves/microbiología , Pinzones , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/genética , Animales , Carga Bacteriana , Genoma Bacteriano , Especificidad del Huésped , Masculino , Infecciones por Mycoplasma/microbiología
12.
J Exp Biol ; 221(Pt 15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29941616

RESUMEN

Carotenoids are well known for their contribution to the vibrant coloration of many animals and have been hypothesized to be important antioxidants. Surprisingly few examples of carotenoids acting as biologically relevant antioxidants in vivo exist, in part because experimental designs often employ carotenoid doses at levels that are rarely observed in nature. Here, we used an approach that reduces carotenoid content from wild-type levels to test for the effect of carotenoids as protectants against an oxidative challenge. We used the marine copepod Tigriopus californicus reared on a carotenoid-free or a carotenoid-restored diet of nutritional yeast and then exposed them to a pro-oxidant. We found that carotenoid-deficient copepods not only accumulated more damage but also were more likely to die during an oxidative challenge than carotenoid-restored copepods. We suggest that carotenoid reduction, and not supplementation, better tests the proposed roles of carotenoids in other physiological functions in animals.


Asunto(s)
Antioxidantes/farmacología , Copépodos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Zeaxantinas/farmacología , Animales , Dieta , terc-Butilhidroperóxido/farmacología
13.
Mol Biol Evol ; 32(8): 1917-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25931514

RESUMEN

Eukaryotes were born of a chimeric union between two prokaryotes--the progenitors of the mitochondrial and nuclear genomes. Early in eukaryote evolution, most mitochondrial genes were lost or transferred to the nucleus, but a core set of genes that code exclusively for products associated with the electron transport system remained in the mitochondrion. The products of these mitochondrial genes work in intimate association with the products of nuclear genes to enable oxidative phosphorylation and core energy production. The need for coadaptation, the challenge of cotransmission, and the possibility of genomic conflict between mitochondrial and nuclear genes have profound consequences for the ecology and evolution of eukaryotic life. An emerging interdisciplinary field that I call "mitonuclear ecology" is reassessing core concepts in evolutionary ecology including sexual reproduction, two sexes, sexual selection, adaptation, and speciation in light of the interactions of mitochondrial and nuclear genomes.


Asunto(s)
Núcleo Celular/genética , Evolución Molecular , Genes Mitocondriales/fisiología , Genoma Mitocondrial/fisiología , Mitocondrias/genética , Animales , Humanos
14.
PLoS Genet ; 8(2): e1002511, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346765

RESUMEN

Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8-1.2×10(-5) per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994-95) strains and have lost the CRISPR-associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.


Asunto(s)
Evolución Molecular , Pinzones/microbiología , Secuencias Invertidas Repetidas/genética , Tasa de Mutación , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Animales , Evolución Biológica , Pollos/microbiología , Pinzones/genética , Genoma Bacteriano , Especificidad del Huésped/genética , Filogenia , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/genética , Análisis de Secuencia de ADN , Pavos/microbiología
15.
BMC Genomics ; 15: 305, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24758272

RESUMEN

BACKGROUND: With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. RESULTS: We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. CONCLUSIONS: The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.


Asunto(s)
Empalme Alternativo , Pinzones/genética , Variación Genética , Transcriptoma , Animales , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Especificidad de la Especie
16.
Proc Natl Acad Sci U S A ; 108(19): 7866-71, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21525409

RESUMEN

Wild organisms are under increasing pressure to adapt rapidly to environmental changes. Predicting the impact of these changes on natural populations requires an understanding of the speed with which adaptive phenotypes can arise and spread, as well as of the underlying mechanisms. However, our understanding of these parameters is poor in natural populations. Here we use experimental and molecular approaches to investigate the recent emergence of resistance in eastern populations of North American house finches (Carpodacus mexicanus) to Mycoplasma galliseptum (MG), a severe conjunctivitis-causing bacterium. Two weeks following an experimental infection that took place in 2007, finches from eastern US populations with a 12-y history of exposure to MG harbored 33% lower MG loads in their conjunctivae than finches from western US populations with no prior exposure to MG. Using a cDNA microarray, we show that this phenotypic difference in resistance was associated with differences in splenic gene expression, with finches from the exposed populations up-regulating immune genes postinfection and those from the unexposed populations generally down-regulating them. The expression response of western US birds to experimental infection in 2007 was more similar to that of the eastern US birds studied in 2000, 7 y earlier in the epizootic, than to that of eastern birds in 2007. These results support the hypothesis that resistance has evolved by natural selection in the exposed populations over the 12 y of the epizootic. We hypothesize that host resistance arose and spread from standing genetic variation in the eastern US and highlight that natural selection can lead to rapid phenotypic evolution in populations when acting on such variation.


Asunto(s)
Evolución Biológica , Aves/genética , Aves/inmunología , Mycobacterium/patogenicidad , Alabama , Animales , Arizona , Enfermedades de las Aves/genética , Enfermedades de las Aves/inmunología , Enfermedades de las Aves/microbiología , Aves/microbiología , Expresión Génica , Perfilación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Mycobacterium/inmunología , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/veterinaria , Análisis de Secuencia por Matrices de Oligonucleótidos , Bazo/inmunología , Bazo/metabolismo
17.
Sci Rep ; 14(1): 9456, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658588

RESUMEN

Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.


Asunto(s)
Migración Animal , Mitocondrias , Gorriones , Animales , Migración Animal/fisiología , Gorriones/fisiología , Mitocondrias/metabolismo , Estaciones del Año , Fosforilación Oxidativa , Respiración de la Célula , Metabolismo Energético
18.
Proc Biol Sci ; 280(1768): 20131314, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23945683

RESUMEN

Why females assess ornaments when choosing mates remains a central question in evolutionary biology. We hypothesize that the imperative for a choosing female to find a mate with nuclear oxidative phosphorylation (OXPHOS) genes that are compatible with her mitochondrial OXPHOS genes drives the evolution of ornaments. Indicator traits are proposed to signal the efficiency of OXPHOS function thus enabling females to select mates with nuclear genes that are compatible with maternal mitochondrial genes in the formation of OXPHOS complexes. Species-typical pattern of ornamentation is proposed to serve as a marker of mitochondrial type ensuring that females assess prospective mates with a shared mitochondrial background. The mitonuclear compatibility hypothesis predicts that the production of ornaments will be closely linked to OXPHOS pathways, and that sexual selection for compatible mates will be strongest when genes for nuclear components of OXPHOS complexes are Z-linked. The implications of this hypothesis are that sexual selection may serve as a driver for the evolution of more efficient cellular respiration.


Asunto(s)
Preferencia en el Apareamiento Animal , Animales , ADN Mitocondrial/química , Evolución Molecular , Femenino , Genotipo , Masculino , Modelos Genéticos , Fosforilación Oxidativa
19.
Arch Biochem Biophys ; 539(2): 156-62, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24080319

RESUMEN

Pathogenic or parasitic infections pose numerous physiological challenges to organisms. Carotenoid pigments have often been used as biomarkers of disease state and impact because they integrate multiple aspects of an individual's condition and nutritional and health state. Some diseases are known to influence carotenoid uptake from food (e.g. coccidiosis) and carotenoid use (e.g. as antioxidants/immunostimulants in the body, or for sexually attractive coloration), but there is relatively little information in animals about how different types of carotenoids from different tissue sources may be affected by disease. Here we tracked carotenoid accumulation in two body pools (retina and plasma) as a function of disease state in free-ranging house finches (Haemorhous mexicanus). House finches in eastern North America can contract mycoplasmal conjunctivitis (Mycoplasma gallisepticum, or MG), which can progress from eye swelling to eye closure and death. Previous work showed that systemic immune challenges in house finches lower carotenoid levels in retina, where they act as photoprotectors and visual filters. We assessed carotenoid levels during the molt period, a time of year when finches uniquely metabolize ketocarotenoids (e.g. 3-hydroxy-echinenone) for acquisition of sexually selected red plumage coloration, and found that males infected with MG circulated significantly lower levels of 3-hydroxy-echinenone, but no other plasma carotenoid types, than birds exhibiting no MG symptoms. This result uncovers a key biochemical mechanism for the documented detrimental effect of MG on plumage redness in H. mexicanus. In contrast, we failed to find a relationship between MG infection status and retinal carotenoid concentrations. Thus, we reveal differential effects of an infectious eye disease on carotenoid types and tissue pools in a wild songbird. At least compared to retinal sources (which appear somewhat more temporally stable than other body carotenoid pools, even to diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.


Asunto(s)
Carotenoides/sangre , Conjuntivitis/sangre , Conjuntivitis/prevención & control , Pinzones , Enfermedades de la Retina/sangre , Enfermedades de la Retina/prevención & control , Animales , Carotenoides/antagonistas & inhibidores , Carotenoides/metabolismo , Carotenoides/fisiología , Conjuntivitis/microbiología , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Masculino , Mycoplasma gallisepticum/metabolismo , Estimulación Luminosa , Fotólisis , Enfermedades de la Retina/microbiología , Dispersión de Radiación
20.
Biol Rev Camb Philos Soc ; 98(6): 2320-2332, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37563787

RESUMEN

Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade-off hypothesis proposes that condition-dependent honest signalling relies on a trade-off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re-allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition-dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition-dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.


Asunto(s)
Carotenoides , Pigmentación , Carotenoides/metabolismo , Pigmentación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA