Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Med ; 21(8): 1808-1820, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30635621

RESUMEN

PURPOSE: Beckwith-Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM. METHODS: We looked for cases showing the clinical features of both BWS and long QT syndrome (LQTS), which is often associated with KCNQ1 variants. Pathogenic variants were identified by genomic analysis and targeted sequencing. Functional experiments were performed to link these pathogenic variants to the imprinting defect. RESULTS: We found three rare cases in which complete IC2 LOM is associated with maternal transmission of KCNQ1 variants, two of which were demonstrated to affect KCNQ1 transcription upstream of IC2. As a consequence of KCNQ1 haploinsufficiency, these variants also cause LQTS on both maternal and paternal transmission. CONCLUSION: These results are consistent with the hypothesis that, similar to what has been demonstrated in mouse, lack of transcription across IC2 results in failure of methylation establishment in the female germline and BWS later in development, and also suggest a new link between LQTS and BWS that is important for genetic counseling.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN/genética , Canal de Potasio KCNQ1/genética , Adolescente , Adulto , Animales , Síndrome de Beckwith-Wiedemann/epidemiología , Síndrome de Beckwith-Wiedemann/patología , Niño , Preescolar , Cromosomas Humanos Par 11/genética , Femenino , Impresión Genómica/genética , Humanos , Lactante , Intrones/genética , Masculino , Herencia Materna/genética , Ratones , Linaje , Adulto Joven
3.
Am J Physiol Regul Integr Comp Physiol ; 305(11): R1376-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049119

RESUMEN

Ca(2+)-activated Cl(-) channels (CaCCs) are critical to processes such as epithelial transport, membrane excitability, and signal transduction. Anoctamin, or TMEM16, is a family of 10 mammalian transmembrane proteins, 2 of which were recently shown to function as CaCCs. The functions of other family members have not been firmly established, and almost nothing is known about anoctamins in invertebrates. Therefore, we performed a phylogenetic analysis of anoctamins across the animal kingdom and examined the expression and function of anoctamins in the genetically tractable nematode Caenorhabditis elegans. Phylogenetic analyses support five anoctamin clades that are at least as old as the deuterostome/protosome ancestor. This includes a branch containing two Drosophila paralogs that group with mammalian ANO1 and ANO2, the two best characterized CaCCs. We identify two anoctamins in C. elegans (ANOH-1 and ANOH-2) that are also present in basal metazoans. The anoh-1 promoter is active in amphid sensory neurons that detect external chemical and nociceptive cues. Within amphid neurons, ANOH-1::GFP fusion protein is enriched within sensory cilia. RNA interference silencing of anoh-1 reduced avoidance of steep osmotic gradients without disrupting amphid cilia development, chemotaxis, or withdrawal from noxious stimuli, suggesting that ANOH-1 functions in a sensory mode-specific manner. The anoh-2 promoter is active in mechanoreceptive neurons and the spermatheca, but loss of anoh-2 had no effect on motility or brood size. Our study indicates that at least five anoctamin duplicates are evolutionarily ancient and suggests that sensory signaling may be a basal function of the anoctamin protein family.


Asunto(s)
Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Proteínas de la Membrana/metabolismo , Filogenia , Animales , Transporte Biológico/genética , Caenorhabditis elegans/genética , Calcio/metabolismo , Canales de Cloruro/genética , Proteínas de la Membrana/genética , Neuronas Aferentes/metabolismo , Transducción de Señal/genética
4.
Genetics ; 209(1): 173-193, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531012

RESUMEN

Covalent attachment of ubiquitin to substrate proteins changes their function or marks them for proteolysis, and the specificity of ubiquitin attachment is mediated by the numerous E3 ligases encoded by animals. Mind Bomb is an essential E3 ligase during Notch pathway signaling in insects and vertebrates. While Caenorhabditis elegans encodes a Mind Bomb homolog (mib-1), it has never been recovered in the extensive Notch suppressor/enhancer screens that have identified numerous pathway components. Here, we show that C. elegans mib-1 null mutants have a spermatogenesis-defective phenotype that results in a heterogeneous mixture of arrested spermatocytes, defective spermatids, and motility-impaired spermatozoa. mib-1 mutants also have chromosome segregation defects during meiosis, molecular null mutants are intrinsically temperature-sensitive, and many mib-1 spermatids contain large amounts of tubulin. These phenotypic features are similar to the endogenous RNA intereference (RNAi) mutants, but mib-1 mutants do not affect RNAi. MIB-1 protein is expressed throughout the germ line with peak expression in spermatocytes followed by segregation into the residual body during spermatid formation. C. elegans mib-1 expression, while upregulated during spermatogenesis, also occurs somatically, including in vulva precursor cells. Here, we show that mib-1 mutants suppress both lin-12 and glp-1 (C. elegans Notch) gain-of-function mutants, restoring anchor cell formation and a functional vulva to the former and partly restoring oocyte production to the latter. However, suppressed hermaphrodites are only observed when grown at 25°, and they are self-sterile. This probably explains why mib-1 was not previously recovered as a Notch pathway component in suppressor/enhancer selection experiments.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptores Notch/metabolismo , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/genética , Alelos , Animales , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Mutación con Pérdida de Función , Mutación , Fenotipo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
5.
FASEB J ; 18(15): 1834-50, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15576487

RESUMEN

ADP-ribosylation factor (Arf) and Arf-like (Arl) proteins are a family of highly conserved 21 kDa GTPases that emerged early in the evolution of eukaryotes. These proteins serve regulatory roles in vesicular traffic, lipid metabolism, microtubule dynamics, development, and likely other cellular processes. We found evidence for the presence of 6 Arf family members in the protist Giardia lamblia and 22 members in mammals. A phylogenetic analysis was performed to delineate the evolutionary relationships among Arf family members and to attempt to organize them by both their evolutionary origins and functions in cells and/or organisms. The approximately 100 protein sequences analyzed from animals, fungi, plants, and protists clustered into 11 groups, including Arfs, nine Arls, and Sar proteins. To begin functional analyses of the family in a metazoan model organism, we examined roles for all three C. elegans Arfs (Arf-1, Arf-3, and Arf-6) and three Arls (Arl-1, Arl-2, and Arl-3) by use of RNA-mediated interference (RNAi). Injection of double-stranded RNA (dsRNA) encoding Arf-1 or Arf-3 into N2 hermaphrodites produced embryonic lethality in their offspring and, later, sterility in the injected animals themselves. Injection of Arl-2 dsRNA resulted in a disorganized germline and sterility in early offspring, with later offspring exhibiting an early embryonic arrest. Thus, of the six Arf family members examined in C. elegans, at least three are required for embryogenesis. These data represent the first analysis of the role(s) of multiple members of this family in the development of a multicellular organism.


Asunto(s)
Factores de Ribosilacion-ADP/clasificación , Factores de Ribosilacion-ADP/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Filogenia , Factores de Ribosilacion-ADP/genética , Animales , Caenorhabditis elegans/genética , Células Eucariotas/enzimología , Genómica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/clasificación , Interferencia de ARN
6.
Genetics ; 191(2): 477-91, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22446317

RESUMEN

Secretory vesicles are used during spermatogenesis to deliver proteins to the cell surface. In Caenorhabditis elegans, secretory membranous organelles (MO) fuse with the plasma membrane to transform spermatids into fertilization-competent spermatozoa. We show that, like the acrosomal vesicle of mammalian sperm, MOs undergo acidification during development. Treatment of spermatids with the V-ATPase inhibitor bafilomycin blocks both MO acidification and formation of functional spermatozoa. There are several spermatogenesis-defective mutants that cause defects in MO morphogenesis, including spe-5. We determined that spe-5, which is on chromosome I, encodes one of two V-ATPase B paralogous subunits. The spe-5 null mutant is viable but sterile because it forms arrested, multi-nucleate spermatocytes. Immunofluorescence with a SPE-5-specific monoclonal antibody shows that SPE-5 expression begins in spermatocytes and is found in all subsequent stages of spermatogenesis. Most SPE-5 is discarded into the residual body during spermatid budding, but a small amount remains in budded spermatids where it localizes to MOs as a discrete dot. The other V-ATPase B subunit is encoded by vha-12, which is located on the X chromosome. Usually, spe-5 mutants are self-sterile in a wild-type vha-12 background. However, an extrachromosomal transgene containing wild-type vha-12 driven by its own promoter allows spe-5 mutant hermaphrodites to produce progeny, indicating that VHA-12 can at least partially substitute for SPE-5. Others have shown that the X chromosome is transcriptionally silent in the male germline, so expression of the autosomally located spe-5 gene ensures that a V-ATPase B subunit is present during spermatogenesis.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Vesículas Secretoras/metabolismo , Espermatogénesis/genética , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica , Masculino , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas , Alineación de Secuencia , Espermatozoides/metabolismo , Testículo/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
7.
Am J Hum Genet ; 76(4): 663-71, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15717285

RESUMEN

Previously, our group reported a five-generation family in which a balanced t(13;17) translocation is associated with a spectrum of skeletal abnormalities, including Robin sequence, hypoplastic scapulae, and a missing pair of ribs. Using polymerase chain reaction (PCR) with chromosome-specific markers to analyze DBA from somatic cell hybrids containing the derivative translocation chromosomes, we narrowed the breakpoint on each chromosome. Subsequent sequencing of PCR products spanning the breakpoints identified the breaks precisely. The chromosome 17 breakpoint maps approximately 932 kb upstream of the sex-determining region Y (SRY)-related high-mobility group box gene (SOX) within a noncoding transcript represented by two IMAGE cDNA clones. A growing number of reports have implicated chromosome 17 breakpoints at a distance of up to 1 Mb from SOX9 in some cases of campomelic dysplasia (CD). Although this multigeneration family has a disorder that shares some features with CD, their phenotype is significantly milder than any reported cases of (nonmosaic) CD. Therefore, this case may represent an etiologically distinct skeletal dysplasia or may be an extremely mild familial example of CD, caused by the most proximal translocation breakpoint from SOX9 reported to date. In addition, we have refined the breakpoint in a acampomelic CD case described elsewhere and have found that it lies approximately 900 kb upstream of SOX9.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Cromosomas Humanos Par 17 , Proteínas del Grupo de Alta Movilidad/genética , Factores de Transcripción/genética , Secuencia de Bases , Rotura Cromosómica , Mapeo Cromosómico , Humanos , Masculino , Datos de Secuencia Molecular , Factor de Transcripción SOX9 , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA