Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hematol Oncol ; 41(3): 424-433, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36426594

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO), an enzyme that metabolizes tryptophan (Trp) to kynurenine (Kyn), is an important microenvironmental factor suppressing antitumor immunity. Here, we investigated the clinical impact of aberrant Trp metabolism in patients with multiple myeloma (MM) treated with lenalidomide (Len) and evaluated its effects on T cell immunity ex vivo. Kyn and Trp concentrations were quantified in sera from 72 patients with relapsed or refractory MM prior to the initiation of therapy with Len plus dexamethasone (Ld). Associations of the Kyn/Trp ratio with progression-free survival (PFS) and overall survival (OS) were analyzed. The expressions of IDO in tumor and stromal cells were evaluated during co-culture, and the effects of culture medium containing low Trp and high Kyn concentrations on T cells in the presence of Len were investigated. Patients with high serum Kyn/Trp ratios (≥46.0, n = 22) had significantly shorter PFS and OS than those with low ratios (4.9 vs. 12.6 months, and 15.5 vs. 45.7 months, respectively). MM cells promoted IDO expression in stromal cells during co-culture in both a direct contact and an indirect manner. Incubation in medium with a high Kyn/Trp ratio significantly inhibited T cell cytokine production and upregulated the expression of inhibitory immune receptors. These effects were sustained even in the presence of Len. In conclusion, a high serum Kyn/Trp ratio is associated with poor prognosis in patients with MM. We propose that aberrant Trp metabolism reduces anti-tumor immunity and the efficacy of Len therapy.


Asunto(s)
Mieloma Múltiple , Triptófano , Humanos , Mieloma Múltiple/tratamiento farmacológico , Lenalidomida/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina
2.
Cancer Med ; 13(3): e6815, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213090

RESUMEN

BACKGROUND: Invasive fungal infections (IFIs) represent a potentially fatal complication in patients who undergo allogeneic hematopoietic stem cell transplantation (HSCT) if the initiation of therapy is delayed. Some guidelines recommend antifungal prophylaxis or preemptive therapy for these patients depending on the risk of IFIs following allogeneic HSCT. This retrospective study aimed to identify the group of patients who safely undergo allogeneic HSCT with low-dose fluconazole (FLCZ) prophylaxis (100 mg/day). METHODS: We retrospectively reviewed 107 patients who underwent their first allogeneic HSCT at Nagoya City University Hospital from January 1, 2010, to December 31, 2019. We analyzed the efficacy of low-dose FLCZ prophylaxis and investigated the relationship between major risk factors and antifungal prophylaxis failure (APF) within 100 days post-transplant. RESULTS: Of the 107 patients, 70 received low-dose FLCZ prophylaxis, showing a cumulative incidence of APF of 37.1% and a proven/probable IFI rate of 4.3%. There were no fungal infection-related deaths, including Aspergillus infections, in the FLCZ prophylaxis group. In a multivariable analysis, cord blood transplantation (CBT) (subdistribution hazard ratio (SHR), 3.55; 95% confidence interval (CI), 1.44-8.77; p = 0.006) and abnormal findings on lung CT before transplantation (SHR, 2.24; 95% CI, 1.02-4.92; p = 0.044) were independent risk factors for APF in the FLCZ prophylaxis group. CONCLUSION: Low-dose FLCZ prophylaxis is a useful and safe option for patients receiving allogeneic HSCT, except in those undergoing CBT or having any fungal risk features including history of fungal infections, positive fungal markers, and abnormal findings on lung CT before transplantation.


Asunto(s)
Fluconazol , Trasplante de Células Madre Hematopoyéticas , Humanos , Fluconazol/efectos adversos , Estudios Retrospectivos , Antifúngicos/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Factores de Riesgo
3.
Nat Cancer ; 4(6): 829-843, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277529

RESUMEN

Tumor cells evade targeted drugs by rewiring their genetic and epigenetic networks. Here, we identified that inhibition of MAPK signaling rapidly induces an epithelial-to-mesenchymal transition program by promoting re-localization of an apical-basal polarity protein, Scribble, in oncogene-addicted lung cancer models. Mis-localization of Scribble suppressed Hippo-YAP signaling, leading to YAP nuclear translocation. Furthermore, we discovered that a RAS superfamily protein MRAS is a direct target of YAP. Treatment with KRAS G12C inhibitors induced MRAS expression, which formed a complex with SHOC2, precipitating feedback activation of MAPK signaling. Abrogation of YAP activation or MRAS induction enhanced the efficacy of KRAS G12C inhibitor treatment in vivo. These results highlight a role for protein localization in the induction of a non-genetic mechanism of resistance to targeted therapies in lung cancer. Furthermore, we demonstrate that induced MRAS expression is a key mechanism of adaptive resistance following KRAS G12C inhibitor treatment.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Retroalimentación , Transducción de Señal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Proteínas ras/genética , Proteínas ras/uso terapéutico
4.
Int J Hematol ; 116(6): 956-960, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35854096

RESUMEN

Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/genética , Receptores de Ácido Retinoico/genética , Fusión Génica , Intrones , ARN , Translocación Genética , Proteínas de Fusión Oncogénica/genética , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 15/genética
5.
Cell Rep ; 40(4): 111095, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905710

RESUMEN

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Asunto(s)
Neuroblastoma , Neurofibromina 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Línea Celular Tumoral , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
6.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680229

RESUMEN

Activating mutations in KRAS are present in 25% of human cancers. When mutated, the KRAS protein becomes constitutively active, stimulating various effector pathways and leading to the deregulation of key cellular processes, including the suppression of apoptosis and enhancement of proliferation. Furthermore, mutant KRAS also promotes metabolic deregulation and alterations in the tumor microenvironment. However, some KRAS mutant cancer cells become independent of KRAS for their survival by activating diverse bypass networks that maintain essential survival signaling originally governed by mutant KRAS. The proposed inducers of KRAS independency are the activation of YAP1 and/or RSK-mTOR pathways and co-mutations in SKT11 (LKB1), KEAP1, and NFE2L2 (NRF2) genes. Metabolic reprogramming, such as increased glutaminolysis, is also associated with KRAS autonomy. The presence or absence of KRAS dependency is related to the heterogeneity of KRAS mutant cancers. Epithelial-to-mesenchymal transition (EMT) in tumor cells is also a characteristic phenotype of KRAS independency. Translationally, this loss of dependence is a cause of primary and acquired resistance to mutant KRAS-specific inhibitors. While KRAS-dependent tumors can be treated with mutant KRAS inhibitor monotherapy, for KRAS-independent tumors, we need an improved understanding of activated bypass signaling pathways towards leveraging vulnerabilities, and advancing therapeutic options for this patient subset.

7.
EJHaem ; 2(2): 285-290, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-35845276

RESUMEN

A 15-year-old male was diagnosed with acute myeloid leukemia with t(6;9)(p23;q34), a chimeric DEK-NUP214 fusion gene. He underwent allogeneic bone marrow transplantation (allo-BMT) from an unrelated volunteer donor at first molecular remission. Approximately 5 years after allo-BMT, multiple bone marrow aspirations showed increased blasts to 63%, which were positive for myeloperoxidase, CD13, CD33, CD56, and CD34. Surprisingly, t(8;21)(q22;q22.1), a chimeric RUNX1-RUNX1T1 (not DEK-NUP214) fusion gene, was detected with full donor chimerism. To our best knowledge, this is the first case of a volunteer unrelated donor cell-derived acute myeloid leukemia harboring a chimeric RUNX1-RUNX1T1 fusion gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA