Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568976

RESUMEN

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Asunto(s)
Receptores Colinérgicos , Sinapsis , Sinapsis/metabolismo , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/fisiología , Neuronas Motoras/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Neurotransmisores/metabolismo , Colinérgicos , Receptores Presinapticos
2.
Br J Cancer ; 128(10): 1838-1849, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871041

RESUMEN

BACKGROUND: Autophagy plays an important role in tumour cell growth and survival and also promotes resistance to chemotherapy. Hence, autophagy has been targeted for cancer therapy. We previously reported that macrolide antibiotics including azithromycin (AZM) inhibit autophagy in various types of cancer cells in vitro. However, the underlying molecular mechanism for autophagy inhibition remains unclear. Here, we aimed to identify the molecular target of AZM for inhibiting autophagy. METHODS: We identified the AZM-binding proteins using AZM-conjugated magnetic nanobeads for high-throughput affinity purification. Autophagy inhibitory mechanism of AZM was analysed by confocal microscopic and transmission electron microscopic observation. The anti-tumour effect with autophagy inhibition by oral AZM administration was assessed in the xenografted mice model. RESULTS: We elucidated that keratin-18 (KRT18) and α/ß-tubulin specifically bind to AZM. Treatment of the cells with AZM disrupts intracellular KRT18 dynamics, and KRT18 knockdown resulted in autophagy inhibition. Additionally, AZM treatment suppresses intracellular lysosomal trafficking along the microtubules for blocking autophagic flux. Oral AZM administration suppressed tumour growth while inhibiting autophagy in tumour tissue. CONCLUSIONS: As drug-repurposing, our results indicate that AZM is a potent autophagy inhibitor for cancer treatment, which acts by directly interacting with cytoskeletal proteins and perturbing their dynamics.


Asunto(s)
Azitromicina , Neoplasias , Animales , Ratones , Azitromicina/farmacología , Azitromicina/uso terapéutico , Antibacterianos , Macrólidos/farmacología , Modelos Animales de Enfermedad , Proteínas del Citoesqueleto , Autofagia , Neoplasias/tratamiento farmacológico
3.
Cancer Sci ; 112(8): 3324-3337, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34051014

RESUMEN

Cancer cells use autophagy for growth, survival, and cytoprotection from chemotherapy. Therefore, autophagy inhibitors appear to be good candidates for cancer treatment. Our group previously reported that macrolide antibiotics, especially azithromycin (AZM), have potent autophagy inhibitory effects, and combination treatment with tyrosine kinase inhibitors or proteasome inhibitors enhances their anti-cancer activity. In this study, we evaluated the effect of combination therapy with DNA-damaging drugs and AZM in non-small-cell lung cancer (NSCLC) cells. We found that the cytotoxic activities of DNA-damaging drugs, such as doxorubicin (DOX), etoposide, and carboplatin, were enhanced in the presence of AZM in NSCLC cell lines, whereas AZM alone exhibited almost no cytotoxicity. This enhanced cell death was dependent on wild-type-p53 status and autophagosome-forming ability because TP53 knockout (KO) and ATG5-KO cells attenuated AZM-enhanced cytotoxicity. DOX treatment upregulated lysosomal biogenesis by activating TFEB and led to lysosomal membrane damage as assessed by galectin 3 puncta assay and cytoplasmic leakage of lysosomal enzymes. In contrast, AZM treatment blocked autophagy, which resulted in the accumulation of lysosomes/autolysosomes. Thus, the effects of DOX and AZM were integrated into the marked increase in damaged lysosomes/autolysosomes, leading to prominent lysosomal membrane permeabilization (LMP) for apoptosis induction. Our data suggest that concomitant treatment with DNA-damaging drugs and AZM is a promising strategy for NSCLC treatment via pronounced LMP induction.


Asunto(s)
Azitromicina/farmacología , Carboplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Células A549 , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Lisosomas/efectos de los fármacos
4.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924373

RESUMEN

A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo Dinactina/metabolismo , Agregado de Proteínas , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Complejo Dinactina/química , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Señales de Localización Nuclear/metabolismo , Mutación Puntual/genética , Unión Proteica , Fracciones Subcelulares/metabolismo
5.
Cancer Sci ; 111(6): 2132-2145, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32304130

RESUMEN

In the cell cycle, the G1 /S transition is controlled by the cyclin-dependent kinase (CDK) 4/6-cyclin D complex. Constitutive activation of CDK4/6 dysregulates G1 /S transition, leading to oncogenic transformation. We found that 3 CDK4/6 inhibitors, abemaciclib, ribociclib, and palbociclib, exerted a cytocidal effect as well as a cytostatic effect at the G1 phase in cancer cell lines, including A549 human non-small cell lung cancer cells. Among these inhibitors, abemaciclib exhibited the most potent cytotoxic effect. The cell-death phenotype induced by abemaciclib, which entailed formation of multiple cytoplasmic vacuoles, was not consistent with apoptosis or necroptosis. Abemaciclib blocked autophagic flux, resulting in accumulation of autophagosomes, however vacuole formation and cell death induced by abemaciclib were independent of autophagy. In addition, methuosis, a cell-death phenotype characterized by vacuole formation induced by excessive macropinocytosis, was excluded because the vacuoles did not incorporate fluorescent dextran. Of note, both formation of vacuoles and induction of cell death in response to abemaciclib were inhibited by vacuolar-type ATPase (V-ATPase) inhibitors such as bafilomycin A1 and concanamycin A. Live-cell imaging revealed that the abemaciclib-induced vacuoles were derived from lysosomes that expanded following acidification. Transmission electron microscopy revealed that these vacuoles contained undigested debris and remnants of organelles. Cycloheximide chase assay revealed that lysosomal turnover was blocked by abemaciclib. Furthermore, mTORC1 inhibition along with partial lysosomal membrane permeabilization occurred after abemaciclib treatment. Together, these results indicate that, in cancer cells, abemaciclib induces a unique form of cell death accompanied by swollen and dysfunctional lysosomes.


Asunto(s)
Aminopiridinas/farmacología , Bencimidazoles/farmacología , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Lisosomas/efectos de los fármacos , Vacuolas/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 531(2): 256-263, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32800344

RESUMEN

Sequestosome 1 (p62) is a multifunctional adapter protein involved in various physiological functions, such as selective autophagy and oxidative stress response. Hence, aberrant expression and defective regulation of p62 are thought to lead to the onset of various diseases, including cancer. The expression of p62 has been shown to be increased in breast cancer tissues, and is correlated with a poor prognosis. However, the role of p62 in the breast cancer pathophysiology is still unclear. Here, we aimed to analyze the effect of changes in p62 expression on breast cancer cell lines. DNA microarray analysis revealed that the expression of progesterone receptor (PR), which is one of the indices for the classification of breast cancer subtypes, was markedly suppressed by forced expression of p62. The protein expression of PR was also decreased by forced expression of p62, but increased by knockdown of p62. Moreover, we found that p62 knockdown induced the protein expression of argonaute 2 (AGO2). Luciferase reporter assay results showed that the gene expression of PR was promoted by AGO2. Furthermore, results revealed that overexpression of AGO2 partially rescued the decrease in PR expression induced by forced expression of p62. Collectively, our findings indicated that p62 accumulation suppressed the expression of AGO2, which in turn decreased the expression of PR, suggesting that p62 may serve as a marker of aggressive breast cancer and poor prognosis. Moreover, the p62-AGO2-PR axis was identified as a crucial signaling cascade in breast cancer progression.


Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Progesterona/genética , Proteína Sequestosoma-1/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Femenino , Humanos , Transporte de Proteínas , Receptores de Progesterona/metabolismo
7.
Biochem Biophys Res Commun ; 527(3): 668-675, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32423812

RESUMEN

We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of ß cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion.


Asunto(s)
Arginina/metabolismo , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/metabolismo , Proinsulina/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares
8.
Biochem Biophys Res Commun ; 511(3): 592-596, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30826053

RESUMEN

Partial hepatectomy (PH) induces estradiol production, and then hepatocyte proliferation. Estradiol may play a role in triggering hepatocyte proliferation after PH. In this study, estradiol was injected to the Estrogen Receptor alpha (ERα) or ERß KO mice. No increased hepatocyte proliferation was observed in ERα KO mice, indicates that ERα is involved in estradiol-induced hepatocyte proliferation. The ERα and ERß KO mice are sterile, hence it is impossible to study ERα and ERß function during pregnancy when the estrogen levels are highest. Using conditional mutagenesis technique, we made ERα hepatocyte KO mice, which are fertile. We used these mice for analyzing the hepatocyte ERα function during pregnancy. However, in the control mice, the maternal hepatocyte was proliferated higher in late pregnancy, but no pregnancy-induced hepatocyte proliferation was observed in KO mice. Hence, we conclude that the maternal hepatocyte ERα is involved in estradiol-induced hepatocyte proliferation in late pregnancy.


Asunto(s)
Proliferación Celular , Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Hepatocitos/citología , Regulación hacia Arriba , Animales , Femenino , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo
9.
Diabetologia ; 61(12): 2608-2620, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30284014

RESUMEN

AIMS/HYPOTHESIS: Epigenetic regulation of gene expression has been implicated in the pathogenesis of obesity and type 2 diabetes. However, detailed information, such as key transcription factors in pancreatic beta cells that mediate environmental effects, is not yet available. METHODS: To analyse genome-wide cis-regulatory profiles and transcriptome of pancreatic islets derived from a diet-induced obesity (DIO) mouse model, we conducted chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) of histone H3 lysine 27 acetylation (histone H3K27ac) and high-throughput RNA sequencing. Transcription factor-binding motifs enriched in differential H3K27ac regions were examined by de novo motif analysis. For the predicted transcription factors, loss of function experiments were performed by transfecting specific siRNA in INS-1, a rat beta cell line, with and without palmitate treatment. Epigenomic and transcriptional changes of possible target genes were evaluated by ChIP and quantitative RT-PCR. RESULTS: After long-term feeding with a high-fat diet, C57BL/6J mice were obese and mildly glucose intolerant. Among 39,350 islet cis-regulatory regions, 13,369 and 4610 elements showed increase and decrease in ChIP-Seq signals, respectively, significantly associated with global change in gene expression. Remarkably, increased H3K27ac showed a distinctive genomic localisation, mainly in the proximal-promoter regions, revealing enriched elements for nuclear respiratory factor 1 (NRF1), GA repeat binding protein α (GABPA) and myocyte enhancer factor 2A (MEF2A) by de novo motif analysis, whereas decreased H3K27ac was enriched for v-maf musculoaponeurotic fibrosarcoma oncogene family protein K (MAFK), a known negative regulator of beta cells. By siRNA-mediated knockdown of NRF1, GABPA or MEF2A we found that INS-1 cells exhibited downregulation of fatty acid ß-oxidation genes in parallel with decrease in the associated H3K27ac. Furthermore, in line with the epigenome in DIO mice, palmitate treatment caused increase in H3K27ac and induction of ß-oxidation genes; these responses were blunted when NRF1, GABPA or MEF2A were suppressed. CONCLUSIONS/INTERPRETATION: These results suggest novel roles for DNA-binding proteins and fatty acid signalling in obesity-induced epigenomic regulation of beta cell function. DATA AVAILABILITY: The next-generation sequencing data in the present study were deposited at ArrayExpress. RNA-Seq: Dataset name: ERR2538129 (Control), ERR2538130 (Diet-induced obesity) Repository name and number: E-MTAB-6718 - RNA-Seq of pancreatic islets derived from mice fed a long-term high-fat diet against chow-fed controls. ChIP-Seq: Dataset name: ERR2538131 (Control), ERR2538132 (Diet-induced obesity) Repository name and number: E-MTAB-6719 - H3K27ac ChIP-Seq of pancreatic islets derived from mice fed a long-term high-fat diet (HFD) against chow-fed controls.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Histonas/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Acetilación , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Biochem Biophys Res Commun ; 501(1): 286-292, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29729272

RESUMEN

Excess stress caused by accumulation of misfolded proteins inside the endoplasmic reticulum (ER) lumen can cause cells to undergo apoptosis. Misfolded proteins exported from ER to cytoplasm are ubiquitinated and mostly degraded by the proteasome, but can also be destroyed by autophagy mediated by the docking proteins p62 and NBR1. When misfolded proteins accumulate beyond the capacity of these clearance systems, they are transported to the microtubule organization center to form aggresomes, which are also degraded by autophagy. Together, these phenomena suggest the existence of a coordinated intracellular network for coping with the accumulation of misfolded proteins. Thus, rational inhibition of this network system might enhance killing of cancer cells subjected to pronounced ER stress loading. Based on this rationale, we sought to establish a quantitative assay for monitoring ER stress loading. MDA-MB231 cells stably transfected with the ERAI-Venus vector exhibited a strong XBP1 splicing signal in response to ER stress. Using the IncuCyte cell imaging system, we monitored the fluorescence intensity of XBP1-Venus, normalized against cell density, as an ER stress indicator. This parameter correlated closely with other reporters of unfolded protein responses. Assessment of the XBP1-Venus signal during exposure to various drug combinations revealed that simultaneous inhibition of the proteasome, autophagy, and aggresome formation led to more effective ER stress loading and higher cytotoxicity than inhibition of only two components. Our data suggest that this monitoring system is a useful tool for designing effective drug combinations for ER stress loading in cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Autofagia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Sistemas de Computación , Diseño de Fármacos , Femenino , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Monitoreo Fisiológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
11.
Carcinogenesis ; 38(3): 261-270, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28426876

RESUMEN

The aim of this study was to clarify the significance of DNA methylation alterations during non-alcoholic steatohepatitis (NASH)-related hepatocarcinogenesis. Single-CpG-resolution genome-wide DNA methylation analysis was performed on 264 liver tissue samples using the Illumina Infinium HumanMethylation450 BeadChip. After Bonferroni correction, 3331 probes showed significant DNA methylation alterations in 113 samples of non-cancerous liver tissue showing NASH (NASH-N) as compared with 55 samples of normal liver tissue (NLT). Principal component analysis using the 3331 probes revealed distinct DNA methylation profiles of NASH-N samples that were different from those of NLT samples and 37 samples of non-cancerous liver tissue showing chronic hepatitis or cirrhosis associated with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection (viral-N). Receiver operating characteristic curve analysis identified 194 probes that were able to discriminate NASH-N samples from viral-N samples with area under the curve values of more than 0.95. Jonckheere-Terptsra trend test revealed that DNA methylation alterations in NASH-N samples from patients without hepatocellular carcinoma (HCC) were inherited by or strengthened in NASH-N samples from patients with HCC, and then inherited by or further strengthened in 22 samples of NASH-related HCC (NASH-T) themselves. NASH- and NASH-related HCC-specific DNA methylation alterations, which were not evident in viral-N samples and 37 samples of HCC associated with HBV or HCV infection, were observed in tumor-related genes, such as WHSC1, and were frequently associated with mRNA expression abnormalities. These data suggested that NASH-specific DNA methylation alterations may participate in NASH-related multistage hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/genética , Metilación de ADN/genética , Neoplasias Hepáticas/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Islas de CpG/genética , Femenino , Virus de Hepatitis/patogenicidad , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/virología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología
12.
Proc Natl Acad Sci U S A ; 111(47): E5105-13, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385606

RESUMEN

Retinotopic maps are plastic in response to changes in sensory input; however, the experience-dependent instructive cues that organize retinotopy are unclear. In animals with forward-directed locomotion, the predominant anterior to posterior optic flow activates retinal ganglion cells in a stereotyped temporal to nasal sequence. Here we imaged retinotectal axon arbor location and structural plasticity to assess map refinement in vivo while exposing Xenopus tadpoles to visual stimuli. We show that the temporal sequence of retinal activity driven by natural optic flow organizes retinotopy by regulating axon arbor branch dynamics, whereas the opposite sequence of retinal activity prevents map refinement. Our study demonstrates that a spatial to temporal to spatial transformation of visual information controls experience-dependent topographic map plasticity. This organizational principle is likely to apply to other sensory modalities and projections in the brain.


Asunto(s)
Flujo Optico , Retina/fisiología , Visión Ocular , Animales , Larva/fisiología , Células Ganglionares de la Retina/fisiología , Xenopus laevis/crecimiento & desarrollo
13.
Genes Dev ; 23(10): 1165-70, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19451216

RESUMEN

Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Red Nerviosa/crecimiento & desarrollo , Proteínas de Dominio T Box/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Netrina , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas Roundabout
14.
Biochem Biophys Res Commun ; 466(4): 717-22, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26348775

RESUMEN

Arginine, a semi-essential amino acid, is known as one of the most strongest insulin secretagogues in a glucose-dependent manner, but major mechanism is unknown. Arginine induced insulin secretion in mice as well as ß cell line, NIT-1, in which more than 90% of intracellular insulin is prionsulin without arginine cultivation. Arginine administration reduced prionsulin amount in 30 s, then insulin is secreted from NIT1 cells. These data indicated that the target factor(s) for arginine-induced insulin secretion located in endoplasmic reticulum (ER). We established the screening system for identifying the arginine mimetics. Brazilian propolis, not Chinese propolis, induced insulin secretion. To identify target factor(s) of arginine induced insulin secretion, our previous study was that nanobeads technology facilitated us to purify chemical-target factors. This time we chose the other way, proinsulin associating factor purification and arginine-immobilized agarose. Three proinsulin associating factors and 5 arginine interacting factors were identified. Among theses factors, Calnexin (CNX) was the only one factor, which belonged to both groups, suggesting that CNX might play a key role in arginine-induced insulin secretion in ER.


Asunto(s)
Arginina/metabolismo , Retículo Endoplásmico/metabolismo , Insulina/metabolismo , Animales , Arginina/farmacología , Materiales Biomiméticos/farmacología , Calnexina/farmacología , Línea Celular , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Nanotecnología , Proinsulina/metabolismo , Própolis/farmacología
15.
Biochem Biophys Res Commun ; 461(1): 28-34, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25858318

RESUMEN

Gefitinib (GEF), an inhibitor for EGFR tyrosine kinase, potently induces autophagy in non-small cell lung cancer (NSCLC) cell lines such as PC-9 cells expressing constitutively activated EGFR kinase by EGFR gene mutation as well as A549 and H226 cells with wild-type EGFR. Unexpectedly, GEF-induced autophagy was also observed in non-NSCLC cells such as murine embryonic fibroblasts (MEF) and leukemia cell lines K562 and HL-60 without EGFR expression. Knockout of EGFR gene in A549 cells by CRISPR/Cas9 system still exhibited autophagy induction after treatment with GEF, indicating that the autophagy induction by GEF is not mediated through inhibiting EGFR kinase activity. Combined treatment with GEF and clarithromycin (CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the cytotoxic effect in NSCLC cell lines, although treatment with CAM alone exhibits no cytotoxicity. GEF treatment induced up-regulation of endoplasmic reticulum (ER)-stress related genes such as CHOP/GADD153 and GRP78. Knockdown of CHOP in PC-9 cells and Chop-knockout MEF both exhibited less sensitivity to GEF than controls. Addition of CAM in culture medium resulted in further pronounced GEF-induced ER stress loading, while CAM alone exhibited no effect. These data suggest that GEF-induced autophagy functions as cytoprotective and indicates the potential therapeutic possibility of using CAM for GEF therapy. Furthermore, it is suggested that the intracellular signaling for autophagy initiation in response to GEF can be completely dissociated from EGFR, but unknown target molecule(s) of GEF for autophagy induction might exist.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Claritromicina/administración & dosificación , Sinergismo Farmacológico , Chaperón BiP del Retículo Endoplásmico , Gefitinib , Humanos , Neoplasias Pulmonares/patología , Quinazolinas/administración & dosificación , Resultado del Tratamiento
16.
Genes Chromosomes Cancer ; 53(12): 1018-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25230976

RESUMEN

The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Perfilación de la Expresión Génica , Neoplasias Renales/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , ARN Mensajero/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Estudios de Cohortes , Femenino , Fusión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética
17.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915552

RESUMEN

Natural visual scenes are dominated by sequences of transforming images. Spatial visual information is thought to be processed by detection of elemental stimulus features which are recomposed into scenes. How image information is integrated over time is unclear. We explored visual information encoding in the optic tectum. Unbiased stimulus presentation shows that the majority of tectal neurons recognize image sequences. This is achieved by temporally dynamic response properties, which encode complex image transitions over several hundred milliseconds. Calcium imaging reveals that neurons that encode spatiotemporal image sequences fire in spike sequences that predict a logical diagram of spatiotemporal information processing. Furthermore, the temporal scale of visual information is tuned by experience. This study indicates how neurons recognize dynamic visual scenes that transform over time.

18.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876803

RESUMEN

A lack of social relationships is increasingly recognized as a type 2 diabetes (T2D) risk. To investigate the underlying mechanism, we used male KK mice, an inbred strain with spontaneous diabetes. Given the association between living alone and T2D risk in humans, we divided the non-diabetic mice into singly housed (KK-SH) and group-housed control mice. Around the onset of diabetes in KK-SH mice, we compared H3K27ac ChIP-Seq with RNA-Seq using pancreatic islets derived from each experimental group, revealing a positive correlation between single-housing-induced changes in H3K27ac and gene expression levels. In particular, single-housing-induced H3K27ac decreases revealed a significant association with islet cell functions and GWAS loci for T2D and related diseases, with significant enrichment of binding motifs for transcription factors representative of human diabetes. Although these H3K27ac regions were preferentially localized to a polymorphic genomic background, SNVs and indels did not cause sequence disruption of enriched transcription factor motifs in most of these elements. These results suggest alternative roles of genetic variants in environment-dependent epigenomic changes and provide insights into the complex mode of disease inheritance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Epigenómica , Islotes Pancreáticos , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Epigenómica/métodos , Histonas/metabolismo , Polimorfismo de Nucleótido Simple , Epigénesis Genética/genética , Diabetes Mellitus Experimental/genética , Estudio de Asociación del Genoma Completo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
19.
Mol Pharmacol ; 83(5): 930-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23393163

RESUMEN

Vesnarinone is a synthetic quinolinone derivative used in the treatment of cardiac failure and cancer. It is also known to cause agranulocytosis as a side effect, which restricts its use, although the mechanism underlying agranulocytosis is not well understood. Here, we show that vesnarinone binds to valosin-containing protein (VCP), which interacts with polyubiquitinated proteins and is essential for the degradation of IκBα to activate nuclear factor (NF)κB. We show that vesnarinone impairs the degradation of IκBα, and that the impairment of the degradation of IκBα is the result of the inhibition of the interaction between VCP and the 26S proteasome by vesnarinone. These results suggest that vesnarinone suppresses NFκB activation by inhibiting the VCP-dependent degradation of polyubiquitinated IκBα, resulting in the suppression of tumor necrosis factor-α mRNA expression.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Quinolinas/farmacología , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células HEK293 , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirazinas , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína que Contiene Valosina
20.
Neuroscience ; 508: 3-18, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470479

RESUMEN

Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.


Asunto(s)
Mapeo Encefálico , Encéfalo , Animales , Encéfalo/fisiología , Campos Visuales , Aprendizaje/fisiología , Predominio Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA