Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(12): 2032-2045, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36851842

RESUMEN

The eye and brain are composed of elaborately organized tissues, development of which is supported by spatiotemporally precise expression of a number of transcription factors and developmental regulators. Here we report the molecular and genetic characterization of Integrator complex subunit 15 (INTS15). INTS15 was identified in search for the causative gene(s) for an autosomal-dominant eye disease with variable individual manifestation found in a large pedigree. While homozygous Ints15 knockout mice are embryonic lethal, mutant mice lacking a small C-terminal region of Ints15 show ocular malformations similar to the human patients. INTS15 is highly expressed in the eye and brain during embryogenesis and stably interacts with the Integrator complex to support small nuclear RNA 3' end processing. Its knockdown resulted in missplicing of a large number of genes, probably as a secondary consequence, and substantially affected genes associated with eye and brain development. Moreover, studies using human iPS cells-derived neural progenitor cells showed that INTS15 is critical for axonal outgrowth in retinal ganglion cells. This study suggests a new link between general transcription machinery and a highly specific hereditary disease.


Asunto(s)
Anomalías del Ojo , Ojo , Péptidos y Proteínas de Señalización Intracelular , Ojo/crecimiento & desarrollo , Anomalías del Ojo/genética , Linaje , Humanos , Masculino , Femenino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre/metabolismo , Animales , Ratones , Ratones Noqueados , Supervivencia Celular , ARN Nuclear Pequeño/metabolismo , Procesamiento Postranscripcional del ARN , Encéfalo/crecimiento & desarrollo
2.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241676

RESUMEN

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Asunto(s)
Melatonina , Ratones , Animales , Melatonina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fosforilación , Ratones Endogámicos C3H , Kinuramina/metabolismo , Envejecimiento , Hipocampo/metabolismo , ARN Mensajero/metabolismo
3.
Angew Chem Int Ed Engl ; 63(17): e202401526, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388816

RESUMEN

Here, doubly protonated Lindqvist-type niobium oxide cluster [H2(Nb6O19)]6-, fabricated by microwave-assisted hydrothermal synthesis, exhibited superbase catalysis for Knoevenagel and crossed aldol condensation reactions accompanied by activating C-H bond with pKa >26 and proton abstraction from a base indicator with pKa=26.5. Surprisingly, [H2(Nb6O19)]6- exhibited water-tolerant superbase properties for Knoevenagel and crossed aldol condensation reactions in the presence of water, although it is well known that the strong basicity of metal oxides and organic superbase is typically lost by the adsorption of water. Density functional theory calculation revealed that the basic surface oxygens that share the corner of NbO6 units in [H2(Nb6O19)]8- maintained the negative charges even after proton adsorption. This proton capacity and the presence of un-protonated basic sites led to the water tolerance of the superbase catalysis.

4.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36203395

RESUMEN

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Asunto(s)
Trastornos Cronobiológicos , Relojes Circadianos , Melatonina , Traumatismos por Radiación , Vuelo Espacial , Humanos , Melatonina/farmacología , Melatonina/fisiología , Ritmo Circadiano/fisiología
5.
Cell ; 134(2): 329-40, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18662547

RESUMEN

Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.


Asunto(s)
Ensamble y Desensamble de Cromatina , Ritmo Circadiano , Sirtuinas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción ARNTL , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Expresión Génica , Histonas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Ratones , Ratones Endogámicos BALB C , NAD/metabolismo , Regiones Promotoras Genéticas , Sirtuina 1 , Sirtuinas/genética , Factores de Transcripción/metabolismo
6.
Neuroimage ; 247: 118794, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906713

RESUMEN

Both imagery and execution of motor control consist of interactions within a neuronal network, including frontal motor-related and posterior parietal regions. To reveal neural representation in the frontoparietal motor network, two approaches have been proposed thus far: one is decoding of actions/modes related to motor control from the spatial pattern of brain activity; and the other is estimating directed functional connectivity (a directed association between two brain regions within motor areas). However, directed connectivity among multiple regions of the frontoparietal motor network during motor imagery (MI) or motor execution (ME) has not been investigated. Here, we attempted to characterize the directed functional connectivity representing the MI and ME conditions. We developed a delayed sequential movement and imagery task to evoke brain activity associated with ME and MI, which can be recorded by functional magnetic resonance imaging. We applied a causal discovery approach, a linear non-Gaussian acyclic causal model, to identify directed functional connectivity among the frontoparietal motor-related brain regions for each condition. We demonstrated higher directed functional connectivity from the contralateral dorsal premotor cortex (dPMC) to the primary motor cortex (M1) in ME than in MI. We further identified significant direct effects of the dPMC and ventral premotor cortex (vPMC) to the parietal regions. In particular, connectivity from the dPMC to the superior parietal lobule (SPL) in the same hemisphere showed significant positive effects across all conditions, while interlateral connectivities from the vPMC to the SPL showed significantly negative effects across all conditions. Finally, we found positive effects from A1 to M1, that is, the audio-motor pathway, in the same hemisphere. These results indicate that the sources of motor command originating in the d/vPMC influenced the M1 and parietal regions for achieving ME and MI. Additionally, sequential sounds may functionally facilitate temporal motor processes.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Motora/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas , Adulto Joven
7.
Zoolog Sci ; 39(4)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960027

RESUMEN

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Asunto(s)
Hipergravedad , Ingravidez , Animales , Carpa Dorada/genética , Carpa Dorada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , ARN Mensajero/genética
8.
Ecotoxicol Environ Saf ; 234: 113401, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35298967

RESUMEN

To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.

9.
Biol Pharm Bull ; 44(8): 1160-1165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334501

RESUMEN

The circadian clock is a highly conserved 24 h biological oscillation mechanism and is affected by environmental stimuli such as light, food and temperature. Disruption of the circadian clock results in disorders of diverse biological processes, including the sleep-wake cycle and metabolism. Although we previously identified several components of the circadian clock in zebrafish, our understanding of the relationship between light-inducible clock genes and metabolism remains incomplete. To investigate how light-inducible clock genes regulate metabolism, we performed transcriptomic and metabolomic analyses of the light-inducible clock genes zPer2, zCry1a, and zCry2a in zebrafish. Transcriptomic analysis of zPer2/zCry1a double knockout (DKO) and zPer2/zCry1a/zCry2a triple knockout (TKO) mutants showed that their gene expression profiles differed from that of wild type (WT) zebrafish. In particular, mRNA levels of zKeap1a, which encodes an oxidative stress sensor, were increased in DKO and TKO mutants. Metabolomic analysis showed genotype-dependent alteration of metabolomic profiles. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) showed the alteration of cysteine/methionine metabolism and glutathione metabolism. Specifically, cysteine and glutathione were decreased but methionine sulfoxide was increased in TKO zebrafish. These results indicate that the light-inducible genes zPer2, zCry1a, and zCry2a are involved in regulating the oxidative status of zebrafish.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Proteínas de Unión al ADN/genética , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Estrés Oxidativo/genética , Proteínas Circadianas Period/genética , Proteínas de Pez Cebra/genética , Animales , Cisteína/metabolismo , Perfilación de la Expresión Génica , Glutatión/metabolismo , Luz , Metionina/metabolismo , Modelos Animales , Oxidación-Reducción , Análisis de Componente Principal , ARN Mensajero/metabolismo , Transcriptoma , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
Neuroimage ; 201: 116036, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31326571

RESUMEN

An increasing number of functional magnetic resonance imaging (fMRI) studies have revealed potential neural substrates of individual differences in diverse types of brain function and dysfunction. Although most previous studies have inherently focused on state-specific characterizations of brain networks and their functions, several recent studies reported on the potential state-unspecific nature of functional brain networks, such as global similarities across different experimental conditions or states, including both task and resting states. However, no previous studies have carried out direct, systematic characterizations of state-unspecific brain networks, or their functional implications. Here, we quantitatively identified several modes of state-unspecific individual variations in whole-brain functional connectivity patterns, called "Common Neural Modes" (CNMs), from a large-scale fMRI database including eight task/resting states. Furthermore, we tested how CNMs accounted for variability in individual cognitive measures. The results revealed that three CNMs were robustly extracted under various dimensions of features used. Each of these CNMs was preferentially correlated with different aspects of representative cognitive measures, reflecting stable individual traits. Importantly, the association between CNMs and cognitive measures emerged from brain connectivity data alone ("unsupervised"), whereas previous related studies have explicitly used both connectivity and cognitive measures to build their prediction models ("supervised"). The three CNMs were also able to predict several life outcomes, including income and life satisfaction, and achieved the highest level of performance when combined with a conventional cognitive measure. Our findings highlight the importance of state-unspecific brain networks in characterizing fundamental individual variation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Imagen por Resonancia Magnética , Neuroimagen , Descanso/fisiología , Análisis y Desempeño de Tareas , Adulto , Femenino , Humanos , Masculino , Adulto Joven
11.
Curr Genomics ; 20(5): 332-339, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32476990

RESUMEN

Circadian clocks are intrinsic, time-tracking systems that bestow upon organisms a survival advantage. Under natural conditions, organisms are trained to follow a 24-h cycle under environmental time cues such as light to maximize their physiological efficiency. The exact timing of this rhythm is established via cell-autonomous oscillators called cellular clocks, which are controlled by transcription/translation-based negative feedback loops. Studies using cell-based systems and genetic techniques have identified the molecular mechanisms that establish and maintain cellular clocks. One such mechanism, known as post-translational modification, regulates several aspects of these cellular clock components, including their stability, subcellular localization, transcriptional activity, and interaction with other proteins and signaling pathways. In addition, these mechanisms contribute to the integration of external signals into the cellular clock machinery. Here, we describe the post-translational modifications of cellular clock regulators that regulate circadian clocks in vertebrates.

12.
J Recept Signal Transduct Res ; 37(4): 401-408, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28270026

RESUMEN

Mammalian ovarian G-protein-coupled receptor 1 (OGR1) is activated by some metals in addition to extracellular protons and coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebrafish OGR1, zebrafish GPR4, and human GPR4 (zOGR1, zGPR4, and hGPR4, respectively) could sense the metals and activate the intracellular signaling pathways. On one hand, we found that only manganese and cobalt of the tested metals stimulated SRE-promoter activities in zOGR1-overexpressed HEK293T cells. On the other hand, none of the metals tested stimulated the promoter activities in zGPR4- and hGPR4-overexpressed cells. The OGR1 mutant (H4F), which is lost to activation by extracellular protons, did not stimulate metal-induced SRE-promoter activities. These results suggest that zOGR1, but not GPR4, is also a metal-sensing G-protein-coupled receptor in addition to a proton-sensing G-protein-coupled receptor, although not all metals that activate hOGR1 activated zOGR1.


Asunto(s)
Receptores Acoplados a Proteínas G/genética , Proteínas de Pez Cebra/genética , Animales , Cobalto/farmacología , AMP Cíclico , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Manganeso/farmacología , Regiones Promotoras Genéticas/genética , Protones , Transducción de Señal/efectos de los fármacos , Pez Cebra/genética
13.
Neural Comput ; 28(3): 445-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26735746

RESUMEN

In many multivariate time series, the correlation structure is nonstationary, that is, it changes over time. The correlation structure may also change as a function of other cofactors, for example, the identity of the subject in biomedical data. A fundamental approach for the analysis of such data is to estimate the correlation structure (connectivities) separately in short time windows or for different subjects and use existing machine learning methods, such as principal component analysis (PCA), to summarize or visualize the changes in connectivity. However, the visualization of such a straightforward PCA is problematic because the ensuing connectivity patterns are much more complex objects than, say, spatial patterns. Here, we develop a new framework for analyzing variability in connectivities using the PCA approach as the starting point. First, we show how to analyze and visualize the principal components of connectivity matrices by a tailor-made rank-two matrix approximation in which we use the outer product of two orthogonal vectors. This leads to a new kind of transformation of eigenvectors that is particularly suited for this purpose and often enables interpretation of the principal component as connectivity between two groups of variables. Second, we show how to incorporate the orthogonality and the rank-two constraint in the estimation of PCA itself to improve the results. We further provide an interpretation of these methods in terms of estimation of a probabilistic generative model related to blind separation of dependent sources. Experiments on brain imaging data give very promising results.

14.
Neuroimage ; 111: 167-78, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25682943

RESUMEN

Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Calibración , Humanos
15.
Neural Comput ; 27(7): 1373-404, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25973547

RESUMEN

Unsupervised analysis of the dynamics (nonstationarity) of functional brain connectivity during rest has recently received a lot of attention in the neuroimaging and neuroengineering communities. Most studies have used functional magnetic resonance imaging, but electroencephalography (EEG) and magnetoencephalography (MEG) also hold great promise for analyzing nonstationary functional connectivity with high temporal resolution. Previous EEG/MEG analyses divided the problem into two consecutive stages: the separation of neural sources and then the connectivity analysis of the separated sources. Such nonoptimal division into two stages may bias the result because of the different prior assumptions made about the data in the two stages. We propose a unified method for separating EEG/MEG sources and learning their functional connectivity (coactivation) patterns. We combine blind source separation (BSS) with unsupervised clustering of the activity levels of the sources in a single probabilistic model. A BSS is performed on the Hilbert transforms of band-limited EEG/MEG signals, and coactivation patterns are learned by a mixture model of source envelopes. Simulation studies show that the unified approach often outperforms conventional two-stage methods, indicating further the benefit of using Hilbert transforms to deal with oscillatory sources. Experiments on resting-state EEG data, acquired in conjunction with a cued motor imagery or nonimagery task, also show that the states (clusters) obtained by the proposed method often correlate better with physiologically meaningful quantities than those obtained by a two-stage method.

16.
Biochem Biophys Res Commun ; 443(3): 917-23, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24380865

RESUMEN

YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transformación Celular Neoplásica/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Proteínas de Unión al ADN/metabolismo , Oncogenes , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencias de Aminoácidos , Animales , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Señales de Localización Nuclear/metabolismo , Unión Proteica , Transporte de Proteínas , Eliminación de Secuencia , Relación Estructura-Actividad , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
17.
Curr Opin Cell Biol ; 19(2): 230-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17317138

RESUMEN

Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Ritmo Circadiano/fisiología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas CLOCK , Ritmo Circadiano/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Fosforilación , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética
18.
Front Cell Dev Biol ; 12: 1340089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385024

RESUMEN

Electromagnetic fields (EMFs) have received widespread attention as effective, noninvasive, and safe therapies across a range of clinical applications for bone disorders. However, due to the various frequencies of devices, their effects on tissues/cells are vary, which has been a bottleneck in understanding the effects of EMFs on bone tissue. Here, we developed an in vivo model system using zebrafish scales to investigate the effects of extremely low-frequency EMFs (ELF-EMFs) on fracture healing. Exposure to 10 millitesla (mT) of ELF-EMFs at 60 Hz increased the number of both osteoblasts and osteoclasts in the fractured scale, whereas 3 or 30 mT did not. Gene expression analysis revealed that exposure to 10 mT ELF-EMFs upregulated wnt10b and Wnt target genes in the fractured scale. Moreover, ß-catenin expression was enhanced by ELF-EMFs predominantly at the fracture site of the zebrafish scale. Inhibition of Wnt/ß-catenin signaling by IWR-1-endo treatment reduced both osteoblasts and osteoclasts in the fractured scale exposed to ELF-EMFs. These results suggest that ELF-EMFs promote both osteoblast and osteoclast activity through activation of Wnt/ß-catenin signaling in fracture healing. Our data provide in vivo evidence that ELF-EMFs generated with a widely used commercial AC power supply have a facilitative effect on fracture healing.

19.
Biomed Res ; 45(5): 187-195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39370297

RESUMEN

Electromagnetic fields (EMFs) noninvasively promote fracture healing, prevent osteoporosis, promote diaphyseal growth, enhance differentiation, and stimulate cell division. However, no good model systems for analyzing bone regeneration have been reported. In this study, we examined the in vivo regeneration of scales having osteoblasts and osteoclasts using a new magnetic field generator for exposing aquatic animals to EMFs at a sine-wave frequency of 60 Hz. Goldfish scales were put into a fish-breeding space with the developed magnetic field generator and exposed to extremely low-frequency electromagnetic fields (ELF-EMFs) of 60 Hz at an intensity of 1, 3, and 5 mT for 10 days while being regenerated the scales. After exposure, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities in the goldfish scales were measured as markers of osteoblasts and osteoclasts, respectively. As a result, both ALP and TRAP activities in regenerating scales exposed to 3 mT ELF-EMFs were higher than those in regenerating scales exposed to 1 and 5 mT ELF-EMFs. Exposure of scales to 3 mT ELF-EMFs significantly enhanced the scale regeneration rate. Exposure of rat calvaria to 3 mT ELF-EMFs also increased both ALP and TRAP activities like in goldfish scales. Thus, we concluded that 3 mT ELF-EMFs contribute to the medical treatment of bone diseases.


Asunto(s)
Fosfatasa Alcalina , Escamas de Animales , Regeneración Ósea , Campos Electromagnéticos , Carpa Dorada , Osteoblastos , Osteoclastos , Fosfatasa Ácida Tartratorresistente , Animales , Osteoclastos/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo , Fosfatasa Alcalina/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Ratas
20.
J Biol Chem ; 287(26): 22089-98, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22544757

RESUMEN

Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hipocalcina/metabolismo , Fosfoproteínas/metabolismo , Acetilación , Alquilantes/farmacología , Daño del ADN , Relación Dosis-Respuesta a Droga , Células HEK293 , Células HeLa , Humanos , Lisina/química , Modelos Biológicos , Interferencia de ARN , Transducción de Señal , Sirtuina 1/metabolismo , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA