RESUMEN
Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.
Asunto(s)
Antibacterianos , Escherichia coli , Fluorometría , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Sitios de Unión , Estructura Molecular , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Animales , Bovinos , Azitromicina/farmacología , Azitromicina/química , Azitromicina/metabolismoRESUMEN
Ubiquitylation had been considered limited to protein lysine residues, but other substrates have recently emerged. Here, we show that DELTEX E3 ligases specifically target the 3' hydroxyl of the adenosine diphosphate (ADP)-ribosyl moiety that can be linked to a protein, thus generating a hybrid ADP-ribosyl-ubiquitin modification. Unlike other known hydroxyl-specific E3s, which proceed via a covalent E3~ubiqutin intermediate, DELTEX enzymes are RING E3s that stimulate a direct ubiquitin transfer from E2~ubiquitin onto a substrate. However, DELTEXes follow a previously unidentified paradigm for RING E3s, whereby the ligase not only forms a scaffold but also provides catalytic residues to activate the acceptor. Comparative analysis of known hydroxyl-ubiquitylating active sites points to the recurring use of a catalytic histidine residue, which, in DELTEX E3s, is potentiated by a glutamate in a catalytic triad-like manner. In addition, we determined the hydrolase specificity profile of this modification, identifying human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enzymes that could reverse it in cells.
RESUMEN
Cancer is a disease caused by errors within the multicellular system and it represents a major health issue in multicellular organisms. Although cancer research has advanced substantially, new approaches focusing on fundamental aspects of cancer origin and mechanisms of spreading are necessary. Comparative genomic studies have shown that most genes linked to human cancer emerged during the early evolution of Metazoa. Thus, basal animals without true tissues and organs, such as sponges (Porifera), might be an innovative model system for understanding the molecular mechanisms of proteins involved in cancer biology. One of these proteins is developmentally regulated GTP-binding protein 1 (DRG1), a GTPase stabilized by interaction with DRG family regulatory protein 1 (DFRP1). This study reveals a high evolutionary conservation of DRG1 gene/protein in metazoans. Our biochemical analysis and structural predictions show that both recombinant sponge and human DRG1 are predominantly monomers that form complexes with DFRP1 and bind non-specifically to RNA and DNA. We demonstrate the conservation of sponge and human DRG1 biological features, including intracellular localization and DRG1:DFRP1 binding, function of DRG1 in α-tubulin dynamics, and its role in cancer biology demonstrated by increased proliferation, migration and colonization in human cancer cells. These results suggest that the ancestor of all Metazoa already possessed DRG1 that is structurally and functionally similar to the human DRG1, even before the development of real tissues or tumors, indicating an important function of DRG1 in fundamental cellular pathways.
Asunto(s)
Neoplasias , Oncogenes , Animales , Proteínas de Unión al GTP , Genómica , Humanos , Neoplasias/genética , ARN , Factores de TranscripciónRESUMEN
ADP-ribosylation is an ancient, highly conserved, and reversible covalent modification critical for a variety of endogenous processes in both prokaryotes and eukaryotes. ADP-ribosylation targets proteins, nucleic acids, and small molecules (including antibiotics). ADP-ribosylation signalling involves enzymes that add ADP-ribose to the target molecule, the (ADP-ribosyl)transferases; and those that remove it, the (ADP-ribosyl)hydrolases. Recently, the toxin/antitoxin pair DarT/DarG composed of a DNA ADP-ribosylating toxin, DarT, and (ADP-ribosyl)hydrolase antitoxin, DarG, was described. DarT modifies thymidine in single-stranded DNA in a sequence-specific manner while DarG reverses this modification, thereby rescuing cells from DarT toxicity. We studied the DarG homologue SCO6735 which is highly conserved in all Streptomyces species and known to be associated with antibiotic production in the bacterium S. coelicolor. SCO6735 shares a high structural similarity with the bacterial DarG and human TARG1. Like DarG and TARG1, SCO6735 can also readily reverse thymidine-linked ADP-ribosylation catalysed by DarT in vitro and in cells. SCO6735 active site analysis including molecular dynamic simulations of its complex with ADP-ribosylated thymidine suggests a novel catalytic mechanism of DNA-(ADP-ribose) hydrolysis. Moreover, a comparison of SCO6735 structure with ALC1-like homologues revealed an evolutionarily conserved feature characteristic for this subclass of macrodomain hydrolases.
RESUMEN
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
RESUMEN
Protein thermal shift assay (TSA) has been extensively used in investigation of protein stabilization (for protein biopharmaceutics stabilization, protein crystallization studies or screening of recombinant proteins) and drug discovery (screening of ligands or inhibitors). This work aimed to analyze thermal shift assay results in comparison to protein polymerization (multimerization and aggregation) propensity and test the most stabilizing formulations for their stabilization effect on enveloped viruses. Influence of protein concentration, buffer pH and molarity was tested on three proteins (immunoglobulin G, ovalbumin, and albumin) and results showed that each of these factors has an impact on determined shift in protein melting point Tm, and the impact was similar for all three proteins. In case of ovalbumin, molecular dynamics simulations were performed with the goal to understanding molecular basis of protein's thermal stability dependence on pH. Effect of three denaturing agents in a wide concentration range on Tm showed nicely that chemical denaturation occurs only at the highest concentrations. Results showed similar effect on Tm for most formulations on different proteins. Most successful formulations were tested for enveloped virus stabilizing potential using cell culture infectivity assay (CCID50) and results showed lack of correlation with TSA results. Only weak correlation of Tm shift and protein polymerization measured by SEC-HPLC was obtained, meaning that polymerization cannot be predicted from Tm shifts.