Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 568(7750): 93-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918407

RESUMEN

Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption1,2. By contrast, oral sodium detection rapidly quenches sodium appetite3,4, suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste-but not sodium ingestion per se-is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Ingestión de Alimentos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sodio/farmacología , Gusto/efectos de los fármacos , Gusto/fisiología , Administración Oral , Animales , Regulación del Apetito/genética , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Encefalinas/metabolismo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Homeostasis/fisiología , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Masculino , Ratones , Motivación/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Sodio/administración & dosificación , Gusto/genética
2.
Neuron ; 103(2): 242-249.e4, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31153646

RESUMEN

For thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals. We show that thirst-driving neurons receive temporally distinct satiation signals by liquid-gulping-induced oropharyngeal stimuli and gut osmolality sensing. We demonstrate that individual thirst satiation signals are mediated by anatomically distinct inhibitory neural circuits in the lamina terminalis. Moreover, we used an ultrafast dopamine (DA) sensor to examine whether thirst satiation itself stimulates the reward-related circuits. Interestingly, spontaneous drinking behavior but not thirst drive reduction triggered DA release. Importantly, chemogenetic stimulation of thirst satiation neurons did not activate DA neurons under water-restricted conditions. Together, this study dissected the thirst satiation circuit, the activity of which is functionally separable from reward-related brain activity.


Asunto(s)
Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Saciedad/fisiología , Estómago/inervación , Órgano Subfornical/citología , Animales , Calcio/metabolismo , Dopamina/metabolismo , Ingestión de Líquidos/fisiología , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Optogenética , Concentración Osmolar , Fragmentos de Péptidos/metabolismo , Estimulación Física
3.
Physiol Behav ; 179: 235-245, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28625550

RESUMEN

Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background.


Asunto(s)
Composición Corporal/genética , Composición Corporal/fisiología , Dieta Occidental/efectos adversos , Interacción Gen-Ambiente , Fenómenos Fisiologicos de la Nutrición Prenatal/genética , Carrera/fisiología , Animales , Animales no Consanguíneos , Ansiedad/genética , Ansiedad/fisiopatología , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Masculino , Exposición Materna , Ratones Endogámicos ICR , Embarazo , Especificidad de la Especie , Volición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA