Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39121873

RESUMEN

Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.


Asunto(s)
Hidrogeles , Microfluídica , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Microfluídica/métodos , Microfluídica/instrumentación , Células Madre Mesenquimatosas/citología
2.
Mater Sci Eng C Mater Biol Appl ; 120: 111724, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545875

RESUMEN

Wound dressings are typically used to provide a favorable environment supporting the intricate process of wound healing. This research aims to fabricate and evaluate an electrospun polycaprolactone (EsPCL) membrane coated with various densities of chitosan oligomers (COS) - a biological agent - for application as bioactive wound dressing. Weight calculation was employed to investigate the density of COS coated onto the electrospun PCL membrane. Physicochemical characteristics of the prepared membranes, such as hydrophilicity and mechanical properties were demonstrated and evaluated through standard experimental methods. In vitro assays and mice model were used to investigate the antibacterial activities, cytocompatibility, hemostasis and the in vivo interaction of the membranes. The results showed that COS was coated successfully on the surface of the polymeric membrane, altering its morphology and associated characteristics. The greater concentration of COS led to an increase in the thickness of the membrane, which resulted in stronger antibacterial activities. Moreover, the increase of chitosan oligomers density in the membrane induced faster hemostasis and affected the re-epithelialization and wound healing in mice. Thus, the membrane as a whole and particularly chitosan oligomers were shown to be potential for further studies regarding wound dressing.


Asunto(s)
Quitosano , Animales , Vendajes , Ratones , Poliésteres , Cicatrización de Heridas
3.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578017

RESUMEN

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.

4.
J Biomed Mater Res A ; 109(12): 2414-2424, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34145706

RESUMEN

In this study, the effect of coated hydrogel layer on characteristics of the whole gelatin/silver nanoparticles multi-coated polycaprolactone membrane (PCLGelAg) was investigated through systematic and typical wound dressing characterizations to select the optimal number of layers for practical applications. Scanning electron microscopy, free swell absorptive capacity and tensile test in both wet and dry conditions were conducted to characterize all fabricated membranes of six coating times. In vitro cytotoxicity and agar diffusion evaluation were also carried out to assess the biocompatibility and antibacterial activity of the membranes. The findings illustrated that as the coated layers increase, the absorptive capacity, and degradation rate were higher, the membranes were stiffer in dry state while the tensile strength in wet state, elongation, and cell viability were significantly decreased. PCLGelAg3 was chosen to be the best fit for wound healing since it maintained quite sufficient maximum buffer uptake, elasticity, cell viability along with inducing abnormalities in bacterial morphology and preventing biofilm formation.


Asunto(s)
Vendajes , Gelatina , Hidrogeles , Nanopartículas del Metal , Poliésteres/química , Plata , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular , Hidrogeles/farmacología , Hidrogeles/toxicidad , Membranas Artificiales , Ratones , Microscopía Electrónica de Rastreo , Poliésteres/farmacología , Poliésteres/toxicidad , Resistencia a la Tracción , Cicatrización de Heridas
5.
Materials (Basel) ; 14(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34442997

RESUMEN

The use of naturally occurring materials with antibacterial properties has gained a great interest in infected wound management. Despite being an abundant resource in Vietnam, chitosan and its derivatives have not yet been intensively explored for their potential in such application. Here, we utilized a local chitosan source to synthesize chitosan oligomers (OCS) using hydrogen peroxide (H2O2) oxidation under the microwave irradiation method. The effects of H2O2 concentration on the physicochemical properties of OCS were investigated through molecular weight, degree of deacetylation, and heavy metal contamination for optimization of OCS formulation. Then, the antibacterial inhibition was examined; the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC) of OCS-based materials were determined against common skin-inhabitant pathogens. The results show that the local Vietnamese chitosan and its derivative OCS possessed high-yield purification while the molecular weight of OCS was inversely proportional and proportional to the concentration of H2O2, respectively. Further, the MIC and MBC of OCS ranged from 3.75 to less than 15 mg/mL and 7.5-15 mg/mL, respectively. Thus, OCS-based materials induce excellent antimicrobial properties and can be attractive for wound dressings and require further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA