Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FEMS Yeast Res ; 18(3)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481685

RESUMEN

Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.


Asunto(s)
Glicerol/farmacología , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo/química , Perfilación de la Expresión Génica , Redes y Vías Metabólicas
2.
Microb Cell Fact ; 16(1): 7, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28068993

RESUMEN

BACKGROUND: Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. RESULTS: By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele. The level of improvement obtained was comparable to the level obtained by overexpression of HAA1, which was achieved by introduction of a second copy of the native HAA1 gene. Dissection of the contribution of the two point mutations to the phenotype showed that the major improvement was caused by an amino acid exchange at position 135 (serine to phenylalanine). In order to further study the mechanisms underlying the tolerance phenotype, Haa1 translocation and transcriptional activation of Haa1 target genes was compared between Haa1 mutant, overproduction and wild-type strains. While the rapid Haa1 translocation from the cytosol to the nucleus in response to acetic acid was not affected in the Haa1S135F mutant strain, the levels of transcriptional activation of four selected Haa1-target genes by acetic acid were significantly higher in cells of the mutant strain as compared to cells of the wild-type strain. Interestingly, the time-course of transcriptional activation in response to acetic acid was comparable for the mutant and wild-type strain whereas the maximum mRNA levels obtained correlate with each strain's tolerance level. CONCLUSION: Our data confirms that engineering of the regulon-specific transcription factor Haa1 allows the improvement of acetic acid tolerance in S. cerevisiae. It was also shown that the beneficial S135F mutation identified in the current work did not lead to an increase of HAA1 transcript level, suggesting that an altered protein structure of the Haa1S135F mutant protein led to an increased recruitment of the transcription machinery to Haa1 target genes.


Asunto(s)
Ácido Acético/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Expresión Génica , Mutación Puntual , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Factores de Transcripción/biosíntesis
3.
Metab Eng ; 36: 68-79, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26971668

RESUMEN

The yeast Saccharomyces cerevisiae generally shows a low natural capability to utilize glycerol as the sole source of carbon, particularly when synthetic medium is used and complex supplements are omitted. Nevertheless, wild type isolates have been identified that show a moderate growth under these conditions. In the current study we made use of intraspecies diversity to identify targets suitable for reverse metabolic engineering of the non-growing laboratory strain CEN.PK113-1A. A genome-wide genetic mapping experiment using pooled-segregant whole-genome sequence analysis was conducted, and one major and several minor genetic loci were identified responsible for the superior glycerol growth phenotype of the previously selected S. cerevisiae strain CBS 6412-13A. Downscaling of the major locus by fine-mapping and reciprocal hemizygosity analysis allowed the parallel identification of two superior alleles (UBR2CBS 6412-13A and SSK1CBS 6412-13A). These alleles together with the previously identified GUT1CBS 6412-13A allele were used to replace the corresponding alleles in the strain CEN.PK113-1A. In this way, glycerol growth could be established reaching a maximum specific growth rate of 0.08h(-1). Further improvement to a maximum specific growth rate of 0.11h(-1) could be achieved by heterologous expression of the glycerol facilitator FPS1 from Cyberlindnera jadinii.


Asunto(s)
Mapeo Cromosómico/métodos , Mejoramiento Genético/métodos , Genoma Bacteriano/genética , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica/genética , Glicerol/aislamiento & purificación , Análisis de Flujos Metabólicos/métodos , Redes y Vías Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biotechnol Biofuels ; 14(1): 211, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727964

RESUMEN

BACKGROUND: The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially relevant QTLs is still missing. RESULTS: Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyping methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resistance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic variation. CONCLUSIONS: Our findings represent an important step in our understanding of the genetic underpinnings of industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of different combinations of mutations that can be explored in genome editing.

5.
Food Chem ; 278: 786-794, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30583444

RESUMEN

This study encompassed the lab-scale fermentation of cocoa beans in 300-g heaps under controlled laboratory conditions, in order to replicate the microbial dynamics and metabolomic changes that usually occur in large-scale spontaneous fermentations. Growth profiles of yeast and acetic acid bacteria (AAB) with the native assortment of microbes as well as with the use of a starter culture were very similar to those observed in literature. Greater production of acetic acid by AAB not only led to more acidic-tasting liquor but also contributed to bitterness, due to polyphenol preservation. It also brought about a drastic drop in pH leading to greater proteolytic activity. Peptides generated through proteolysis also showed incredible similarity to those reported in literature, in particular, those speculated to be involved in cocoa-specific flavour. A closer look at the naturally occurring peptide repertoires of our fermentation trials, generated by the breakdown of cocoa storage protein, pointed to a potential peptide responsible for cocoa-specific aroma.


Asunto(s)
Cacao/microbiología , Microbiología de Alimentos , Consorcios Microbianos/fisiología , Proteínas de Plantas/metabolismo , Polifenoles/metabolismo , Ácido Acético/metabolismo , Acetobacter/crecimiento & desarrollo , Cacao/metabolismo , Chocolate , Fermentación , Humanos , Concentración de Iones de Hidrógeno , Metaboloma , Consorcios Microbianos/genética , Péptidos/metabolismo , Proteínas de Plantas/análisis , Polifenoles/análisis , Saccharomyces cerevisiae/crecimiento & desarrollo , Gusto
6.
Biotechnol Biofuels ; 10: 10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28053667

RESUMEN

BACKGROUND: Glycerol is an abundant by-product of biodiesel production and has several advantages as a substrate in biotechnological applications. Unfortunately, the popular production host Saccharomyces cerevisiae can barely metabolize glycerol by nature. RESULTS: In this study, two evolved derivatives of the strain CEN.PK113-1A were created that were able to grow in synthetic glycerol medium (strains PW-1 and PW-2). Their growth performances on glycerol were compared with that of the previously published evolved CEN.PK113-7D derivative JL1. As JL1 showed a higher maximum specific growth rate on glycerol (0.164 h-1 compared to 0.119 h-1 for PW-1 and 0.127 h-1 for PW-2), its genomic DNA was subjected to whole-genome resequencing. Two point mutations in the coding sequences of the genes UBR2 and GUT1 were identified to be crucial for growth in synthetic glycerol medium and subsequently verified by reverse engineering of the wild-type strain CEN.PK113-7D. The growth rate of the resulting reverse-engineered strain was 0.130 h-1. Sanger sequencing of the GUT1 and UBR2 alleles of the above-mentioned evolved strains PW-1 and PW-2 also revealed one single-point mutation in these two genes, and both mutations were demonstrated to be also crucial and sufficient for obtaining a maximum specific growth rate on glycerol of ~0.120 h-1. CONCLUSIONS: The current work confirmed the importance of UBR2 and GUT1 as targets for establishing glycerol utilization in strains of the CEN.PK family. In addition, it shows that a growth rate on glycerol of 0.130 h-1 can be established in reverse-engineered CEN.PK strains by solely replacing a single amino acid in the coding sequences of both Ubr2 and Gut1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA