Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 140(23): 2500-2513, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984904

RESUMEN

Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias , Humanos , Azitromicina/farmacología , Azitromicina/uso terapéutico , Redes y Vías Metabólicas , Trasplante de Células Madre
2.
J Allergy Clin Immunol ; 152(4): 972-983, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343845

RESUMEN

BACKGROUND: Gain-of-function variants of JAK1 drive a rare immune dysregulation syndrome associated with atopic dermatitis, allergy, and eosinophilia. OBJECTIVES: This study sought to describe the clinical and immunological characteristics associated with a new gain-of-function variant of JAK1 and report the therapeutic efficacy of Janus kinase (JAK) inhibition. METHODS: The investigators identified a family affected by JAK1-associated autoinflammatory disease and performed clinical assessment and immunological monitoring on 9 patients. JAK1 signaling was studied by flow and mass cytometry in patients' cells at basal state or after immune stimulation. A molecular disease signature in the blood was studied at the transcriptomic level. Patients were treated with 1 of 2 JAK inhibitors: either baricitinib or upadacitinib. Clinical, cellular, and molecular response were evaluated over a 2-year period. RESULTS: Affected individuals displayed a syndromic disease with prominent allergy including atopic dermatitis, ichthyosis, arthralgia, chronic diarrhea, disseminated calcifying fibrous tumors, and elevated whole blood histamine levels. A variant of JAK1 localized in the pseudokinase domain was identified in all 9 affected, tested patients. Hyper-phosphorylation of STAT3 was found in 5 of 6 patients tested. Treatment of patients' cells with baricitinib controlled most of the atypical hyper-phosphorylation of STAT3. Administration of baricitinib to patients led to rapid improvement of the disease in all adults and was associated with reduction of systemic inflammation. CONCLUSIONS: Patients with this new JAK1 gain-of-function pathogenic variant displayed very high levels of blood histamine and showed a variable combination of atopy with articular and gastrointestinal manifestations as well as calcifying fibrous tumors. The disease, which appears to be linked to STAT3 hyperactivation, was well controlled under treatment by JAK inhibitors in adult patients.


Asunto(s)
Dermatitis Atópica , Inhibidores de las Cinasas Janus , Neoplasias , Adulto , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Histamina , Neoplasias/tratamiento farmacológico , Janus Quinasa 1/genética
3.
Hepatology ; 76(5): 1360-1375, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35278227

RESUMEN

BACKGROUND AND AIMS: In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS: Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS: PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.


Asunto(s)
Hepatopatías , Células Madre Mesenquimatosas , Ratones , Humanos , Animales , Miofibroblastos/metabolismo , Medios de Cultivo Condicionados/metabolismo , Hibridación Fluorescente in Situ , Ligandos , Cirrosis Hepática/patología , Hígado/patología , Fibroblastos/patología , Hepatopatías/patología , ARN , Células Estrelladas Hepáticas/metabolismo , Células Cultivadas
4.
Blood ; 129(7): 855-865, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28060720

RESUMEN

Human herpesvirus 8 (HHV-8) is the causative agent of Kaposi sarcoma (KS) and multicentric Castleman disease (MCD), a life-threatening, virally induced B-cell lymphoproliferative disorder. HHV-8 is a B-lymphotropic γ-herpesvirus closely related to the Epstein-Barr virus (EBV). Invariant natural killer T (iNKT) cells are innate-like T cells that play a role in antiviral immunity, specifically in controlling viral replication in EBV-infected B cells. Decline of iNKT cells is associated with age or HIV infection, both situations associated with HHV-8-related diseases. We analyzed iNKT cells in both blood (n = 26) and spleen (n = 9) samples from 32 patients with HHV-8 MCD and compared them with patients with KS (n = 24) and healthy donors (n = 29). We determined that both circulating and splenic iNKT cell frequencies were markedly decreased in patients with HHV-8 MCD and were undetectable in 6 of them. Moreover, iNKT cells from patients with HHV-8 MCD displayed a proliferative defect after stimulation with α-galactosylceramide. These iNKT cell alterations were associated with an imbalance in B-cell subsets, including a significant decrease in memory B cells, particularly of marginal zone (MZ) B cells. Coculture experiments revealed that the decrease in iNKT cells contributed to the alterations in the B-cell subset distribution. These observations contribute to a better understanding of the complex interactions between HHV-8 and immune cells that cause HHV-8-related MCD.


Asunto(s)
Subgrupos de Linfocitos B/patología , Enfermedad de Castleman/patología , Enfermedad de Castleman/virología , Herpesvirus Humano 8/aislamiento & purificación , Células T Asesinas Naturales/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD1d/análisis , Subgrupos de Linfocitos B/virología , Proliferación Celular , Femenino , Humanos , Inmunoglobulina D/análisis , Masculino , Persona de Mediana Edad , Células T Asesinas Naturales/virología , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Bazo/patología , Bazo/virología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis
5.
Stem Cell Res ; 74: 103294, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183888

RESUMEN

BCL2-Associated Athanogene 3 (BAG3) gene was identified mutated in patients with dilated cardiomyopathy (DCM), an important cause of heart failure and premature death. BAG3 is a cytoprotective co-chaperonne protein involved in many cellular process with a central role in the maintenance of protostasis. We generated two human induced pluripotent stem cell lines (hiPSc), one carrying the heterozygous, the other the homozygous p.V468M mutation identified in DCM familial cases. All lines expressed pluripotent markers, had normal karyotype, and differentiated into derivatives of the three germ layers. Sudies of hiPSc derived cardiomyocytes will help to understand the role of BAG3 in DCM.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Mutación/genética , Cardiomiopatía Dilatada/genética
6.
J Exp Med ; 220(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917008

RESUMEN

Here, we report on a heterozygous interferon regulatory factor 4 (IRF4) missense variant identified in three patients from a multigeneration family with hypogammaglobulinemia. Patients' low blood plasmablast/plasma cell and naïve CD4 and CD8 T cell counts contrasted with high terminal effector CD4 and CD8 T cell counts. Expression of the mutant IRF4 protein in control lymphoblastoid B cell lines reduced the expression of BLIMP-1 and XBP1 (key transcription factors in plasma cell differentiation). In B cell lines, the mutant IRF4 protein as wildtype was found to bind to known IRF4 binding motifs. The mutant IRF4 failed to efficiently regulate the transcriptional activity of interferon-stimulated response elements (ISREs). Rapid immunoprecipitation mass spectrometry of endogenous proteins indicated that the mutant and wildtype IRF4 proteins differed with regard to their respective sets of binding partners. Our findings highlight a novel mechanism for autosomal-dominant primary immunodeficiency through altered protein binding by mutant IRF4 at ISRE, leading to defective plasma cell differentiation.


Asunto(s)
Linfocitos B , Factores Reguladores del Interferón , Humanos , Linfocitos B/metabolismo , Diferenciación Celular , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Mutación/genética , Células Plasmáticas/metabolismo
7.
Cell Rep Med ; 4(12): 101333, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118407

RESUMEN

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-ß. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.


Asunto(s)
Interferón Tipo I , Enfermedades Vasculares , Humanos , Monocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Interferón Tipo I/metabolismo , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA