Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Brain Mapp ; 44(15): 5095-5112, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548414

RESUMEN

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen Eco-Planar , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Artefactos
2.
Magn Reson Med ; 87(5): 2299-2312, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34971454

RESUMEN

PURPOSE: To develop a 3D MR technique to simultaneously acquire proton multiparametric maps (T1 , T2 , and proton density) and sodium density weighted images over the whole brain. METHODS: We implemented a 3D stack-of-stars MR pulse sequence which consists of interleaved proton (1 H) and sodium (23 Na) excitations, tailored slice encoding gradients that can encode the same slice for both nuclei, and simultaneous readout with different radial trajectories (1 H, full-radial; 23 Na, center-out radial). The receive chain of our 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. A heuristically optimized flip angle train was implemented for proton MR fingerprinting (MRF). The SNR and the accuracy of proton T1 and T2 were evaluated in phantoms. Finally, in vivo application of the method was demonstrated in five healthy subjects. RESULTS: The SNR for the simultaneous measurement was almost identical to that for the single-nucleus measurements (<2% change). The proton T1 and T2 maps remained similar to the results from a reference 2D MRF technique (normalized RMS error in T1 ≈ 4.2% and T2 ≈ 11.3%). Measurements in healthy subjects corroborated these results and demonstrated the feasibility of our method for in vivo application. The in vivo T1 values measured using our method were lower than the results measured by other conventional techniques. CONCLUSIONS: With the 3D simultaneous implementation, we were able to acquire sodium and proton density weighted images in addition to proton T1 , T2 , and B1+ from 1 H MRF that covers the whole brain volume within 21 min.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Protones , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Sodio
3.
Magn Reson Med ; 87(5): 2566-2575, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34971464

RESUMEN

PURPOSE: To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS: The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS: The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION: In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.


Asunto(s)
Imagen por Resonancia Magnética , Muñeca , Impedancia Eléctrica , Diseño de Equipo , Mano/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Muñeca/diagnóstico por imagen
4.
NMR Biomed ; 34(7): e4531, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33902155

RESUMEN

In this work, we propose a free-breathing magnetic resonance fingerprinting (MRF) method that can be used to obtain B1+ -robust quantitative T1 maps of the abdomen in a clinically acceptable time. A three-dimensional MRF sequence with a radial stack-of-stars trajectory was implemented, and its k-space acquisition ordering was adjusted to improve motion-robustness in the context of MRF. The flip angle pattern was optimized using the Cramér-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900 and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated T1 values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artifacts can appear in the quantitative maps and confirmed that a motion-robust k-space ordering is essential. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate B1+ -robust quantitative maps of T1 and B1+ next to M0 -weighted images under free-breathing conditions at a clinically usable resolution within 5 min.


Asunto(s)
Abdomen/diagnóstico por imagen , Imagen por Resonancia Magnética , Respiración , Humanos , Movimiento (Física) , Fantasmas de Imagen
5.
Magn Reson Med ; 78(2): 721-729, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27689918

RESUMEN

PURPOSE: The purpose of this work was to investigate disease progression and treatment response in a murine model of chronic obstructive pulmonary disease (COPD) using a preclinical hyperpolarized 129 Xe (HPXe) magnetic resonance imaging (MRI) strategy. METHODS: COPD phenotypes were induced in 32 mice by 10 weeks of exposure to cigarette smoke (CS) and lipopolysaccharide (LPS). Efficacy of ethyl pyruvate (EP), an anti-inflammatory drug, was investigated by administering EP to 16 of the 32 mice after 6 weeks of CS and LPS exposure. HPXe MRI was performed to monitor changes in pulmonary function during disease progression and pharmacological therapy. RESULTS: HPXe metrics of fractional ventilation and gas-exchange function were significantly reduced after 6 weeks of CS and LPS exposure compared to sham-instilled mice administered with saline (P < 0.05). After this observation, EP administration was started in 16 of the 32 mice and continued for 4 weeks. EP was found to improve HPXe MRI metrics to a similar level as in sham-instilled mice (P < 0.01). Histological analysis showed significant alveolar tissue destruction in the COPD group, but relatively normal alveolar structure in the EP and sham-instilled groups. CONCLUSION: This study demonstrates the potential efficacy of EP for COPD therapy, as assessed by a noninvasive, translatable 129 Xe MRI procedure. Magn Reson Med 78:721-729, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Antiinflamatorios/uso terapéutico , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica , Piruvatos/uso terapéutico , Isótopos de Xenón/química , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
6.
NMR Biomed ; 29(10): 1414-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526627

RESUMEN

The use of a quenching gas, isobutene, with a low vapor pressure was investigated to enhance the utility of hyperpolarized (129) Xe (HP Xe) MRI. Xenon mixed with isobutene was hyperpolarized using a home-built apparatus for continuously producing HP Xe. The isobutene was then readily liquefied and separated almost totally by continuous condensation at about 173 K, because the vapor pressure of isobutene (0.247 kPa) is much lower than that of Xe (157 kPa). Finally, the neat Xe gas was continuously delivered to mice by spontaneous inhalation. The HP Xe MRI was enhanced twofold in polarization level and threefold in signal intensity when isobutene was adopted as the quenching gas instead of N2 . The usefulness of the HP Xe MRI was verified by application to pulmonary functional imaging of spontaneously breathing mice, where the parameters of fractional ventilation (ra ) and gas exchange (fD ) were evaluated, aiming at future extension to preclinical studies. This is the first application of isobutene as a quenching gas for HP Xe MRI.


Asunto(s)
Alquenos/farmacocinética , Aumento de la Imagen/métodos , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Intercambio Gaseoso Pulmonar/fisiología , Isótopos de Xenón/farmacocinética , Administración por Inhalación , Alquenos/administración & dosificación , Animales , Medios de Contraste , Gases , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos , Radiofármacos/administración & dosificación , Radiofármacos/farmacología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Isótopos de Xenón/administración & dosificación
7.
ArXiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38699168

RESUMEN

The nuclear magnetic resonance signal from sodium (23Na) nuclei demonstrates a fast bi-exponential T2 decay in biological tissues (T2,short = 0.5-5 ms and T2,long = 10-30 ms). Hence, blurring observed in sodium images acquired with center-out sequences is generally assumed to be dominated by signal attenuation at higher k-space frequencies. Most of the studies in the field primarily focus on the impact of readout duration on blurring but neglect the impact of resolution. In this paper, we examine the blurring effect of short T2 on images at different resolutions. A series of simulations, as well as phantom and in vivo scans were performed at varying resolutions and readout durations in order to evaluate progressive changes in image quality. We demonstrate that, given a fixed readout duration, T2 decay produces distinct blurring effects at different resolutions. Therefore, in addition to voxel size-dependent partial volume effects, the choice of resolution adds additional T2-dependent blurring.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38082892

RESUMEN

We present a custom-built MR-compatible data glove to capture hand motion during concurrent fMRI experiments at 7 Tesla. Thermal and phantom tests showed our data glove can be used safely and without degradation of image quality. Subject-specific Blood Oxygen Level Dependent (BOLD) signal models, for use in fMRI analysis, were constructed based on recorded kinematic measurements. Experiments revealed the relative fMRI BOLD signal contribution of flexing, extending, and sustained isotonic extension. The ability to evaluate subject performance in real-time and create subject-specific BOLD signal models enables a wide range of experimental paradigms with improved data quality.Clinical Relevance- Using an MR compatible dataglove, subject specific Blood Oxygen Signal Level Dependent (BOLD) signal models can be constructed to study how the brain implements fine motor control.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Motora , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Corteza Motora/diagnóstico por imagen
9.
Magn Reson Med Sci ; 17(4): 331-337, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29526883

RESUMEN

PURPOSE: High Mobility Group Box1 (HMGB1), which is one of the damage-associated molecular pattern molecules relating to various inflammatory diseases, has gained interest as a therapeutic target because of its involvement in wound healing processes. In the present study, we investigated HMGB1 as a potential therapeutic target in a model of lung fibrosis using a preclinical hyperpolarized 129Xe (HPXe) MRI system. METHODS: Lung injury was induced by intra-peritoneal injection of bleomycin (BLM) in 19 mice. Three weeks post-injection (when fibrosis was confirmed histologically), administration of ethyl pyruvate (EP) and alogliptin (ALG), which are down- and up-regulators of HMGB1, respectively, was commenced in six and seven of the 19 mice, respectively, and continued for a further 3 weeks. A separate sham-instilled group was formed of five mice, which were administered with saline for 6 weeks. Over the second 3-week period, the effects of disease progression and pharmacological therapy in the four groups of mice were monitored by HPXe MRI metrics of fractional ventilation and gas-exchange function. RESULTS: Gas-exchange function in BLM mice was significantly reduced after 3 weeks of BLM challenge compared to sham-instilled mice (P < 0.05). Ethyl pyruvate was found to improve HPXe MRI metrics of both ventilation and gas exchange, and repair tissue damage (assessed histologically), to a similar level as sham-instilled mice (P < 0.05), whilst ALG treatment caused no significant improvement of pulmonary function. CONCLUSION: This study demonstrates the down-regulator of HMGB1, EP, as a potential therapeutic agent for pulmonary fibrosis, as assessed by a non-invasive HPXe MRI protocol.


Asunto(s)
Lesión Pulmonar , Pulmón , Imagen por Resonancia Magnética/métodos , Piruvatos/farmacología , Animales , Bleomicina/efectos adversos , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/diagnóstico por imagen , Ratones , Piruvatos/administración & dosificación , Isótopos de Xenón/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA