Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 96(8): 1398-1405, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29732591

RESUMEN

Cutaneous afferent nerves convey sensory information from the external, visceral nerves from the internal environment. The saphenous nerve arising from lumbar dorsal root ganglia and the vagus nerve originating in the nodosum ganglia are prototypic examples of such cutaneous and visceral nerves. Despite a common sensory role, these two nerves have distinct embryonic origin and vary in neuropeptide expression. Because of their distinct physiological roles, it is plausible that they differ also in conductive properties. We have tested calcitonin gene-related peptide (CGRP) release in these nerves in response to electrical and chemical stimulation. Electrical stimulation at 3, 6, and 9 Hz increased the release in saphenous but not vagus nerves, with 6 Hz being the most potent stimulus. Similarly, both capsaicin and a depolarizing solution of 60 mM KCl evoked CGRP release in saphenous but not vagus nerves. Simultaneous recording of the superimposed (compound) action potentials of these nerves revealed that only saphenous nerves exhibit a progressive and marked activity-dependent slowing of conduction velocity in response to electrical stimulation at 3, 6, and 9 Hz (30%, 44%, and 50%, respectively). Capsaicin caused an unexpected decrease in conduction latency (i.e., speeding) in contrast to the slowing seen in other nerves. Exposure of axons to 1 µM TTX rapidly blocked conduction in all nerves. Together our results demonstrate that vagus and saphenous primary afferents reveal different activation and conductive properties, presumably correlating their particular physiological roles in transmitting sensory signals. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Nervios Periféricos/fisiología , Piel/inervación , Nervio Vago/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Capsaicina/farmacología , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/metabolismo , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(29): E2018-27, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22733753

RESUMEN

Selective targeting of sensory or nociceptive neurons in peripheral nerves remains a clinically desirable goal. Delivery of promising analgesic drugs is often impeded by the perineurium, which functions as a diffusion barrier attributable to tight junctions. We used perineurial injection of hypertonic saline as a tool to open the perineurial barrier transiently in rats and elucidated the molecular action principle in mechanistic detail: Hypertonic saline acts via metalloproteinase 9 (MMP9). The noncatalytic hemopexin domain of MMP9 binds to the low-density lipoprotein receptor-related protein-1, triggers phosphorylation of extracellular signal-regulated kinase 1/2, and induces down-regulation of the barrier-forming tight junction protein claudin-1. Perisciatic injection of any component of this pathway, including MMP9 hemopexin domain or claudin-1 siRNA, enables an opioid peptide ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin) and a selective sodium channel (NaV1.7)-blocking toxin (ProToxin-II) to exert antinociceptive effects without motor impairment. The latter, as well as the classic TTX, blocked compound action potentials in isolated nerves only after disruption of the perineurial barrier, which, in return, allowed endoneurally released calcitonin gene-related peptide to pass through the nerve sheaths. Our data establish the function and regulation of claudin-1 in the perineurium as the major sealing component, which could be modulated to facilitate drug delivery or, potentially, reseal the barrier under pathological conditions.


Asunto(s)
Analgésicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Nervios Periféricos/metabolismo , Solución Salina Hipertónica/administración & dosificación , Analgésicos/metabolismo , Animales , Western Blotting , Claudina-1 , Espectroscopía Dieléctrica , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Metaloproteinasa 9 de la Matriz/farmacología , Proteínas de la Membrana/metabolismo , Umbral del Dolor/efectos de los fármacos , Fosforilación , ARN Interferente Pequeño/genética , Ratas , Solución Salina Hipertónica/metabolismo
3.
Mol Pain ; 8: 69, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22978421

RESUMEN

BACKGROUND: Gain-of-function mutations of the nociceptive voltage-gated sodium channel Nav1.7 lead to inherited pain syndromes, such as paroxysmal extreme pain disorder (PEPD). One characteristic of these mutations is slowed fast-inactivation kinetics, which may give rise to resurgent sodium currents. It is long known that toxins from Anemonia sulcata, such as ATX-II, slow fast inactivation and skin contact for example during diving leads to various symptoms such as pain and itch. Here, we investigated if ATX-II induces resurgent currents in sensory neurons of the dorsal root ganglion (DRGs) and how this may translate into human sensations. RESULTS: In large A-fiber related DRGs ATX-II (5 nM) enhances persistent and resurgent sodium currents, but failed to do so in small C-fiber linked DRGs when investigated using the whole-cell patch-clamp technique. Resurgent currents are thought to depend on the presence of the sodium channel ß4-subunit. Using RT-qPCR experiments, we show that small DRGs express significantly less ß4 mRNA than large sensory neurons. With the ß4-C-terminus peptide in the pipette solution, it was possible to evoke resurgent currents in small DRGs and in Nav1.7 or Nav1.6 expressing HEK293/N1E115 cells, which were enhanced by the presence of extracellular ATX-II. When injected into the skin of healthy volunteers, ATX-II induces painful and itch-like sensations which were abolished by mechanical nerve block. Increase in superficial blood flow of the skin, measured by Laser doppler imaging is limited to the injection site, so no axon reflex erythema as a correlate for C-fiber activation was detected. CONCLUSION: ATX-II enhances persistent and resurgent sodium currents in large diameter DRGs, whereas small DRGs depend on the addition of ß4-peptide to the pipette recording solution for ATX-II to affect resurgent currents. Mechanical A-fiber blockade abolishes all ATX-II effects in human skin (e.g. painful and itch-like paraesthesias), suggesting that it mediates its effects mainly via activation of A-fibers.


Asunto(s)
Venenos de Cnidarios/toxicidad , Activación del Canal Iónico/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Dolor/patología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Animales , Venenos de Cnidarios/administración & dosificación , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Células HEK293 , Humanos , Inyecciones Intradérmicas , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/metabolismo , Dolor/fisiopatología , Péptidos/toxicidad , Prurito/patología , Prurito/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Factores de Tiempo
4.
Toxins (Basel) ; 8(3)2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26999206

RESUMEN

Loss-of-function mutations of Na(V)1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of Na(V)1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of Na(V)1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of Na(V)1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with Na(V)1.7 inhibitors and significantly reduced in Na(V)1.7(-/-) mice. To validate the use of the model for profiling Na(V)1.7 inhibitors, we determined the Na(V) selectivity and tested the efficacy of the reported Na(V)1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited Na(V)1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited Na(V)1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited Na(V) channels and was only effective in the OD1 model when delivered systemically. Our novel model of Na(V)1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of Na(V)1.7 inhibitors.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Dolor/tratamiento farmacológico , Péptidos/uso terapéutico , Éteres Fenílicos/uso terapéutico , Prolina/análogos & derivados , Venenos de Escorpión/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Venenos de Araña/uso terapéutico , Analgésicos , Animales , Conducta Animal/efectos de los fármacos , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/genética , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Dolor/inducido químicamente , Prolina/uso terapéutico , Vena Safena/inervación , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA