Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 28(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299023

RESUMEN

Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.


Asunto(s)
Boranos , Inhibidores de la Lipooxigenasa , Humanos , Ciclooxigenasa 2 , Inhibidores de la Lipooxigenasa/farmacología
2.
Bioorg Chem ; 95: 103528, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918397

RESUMEN

Eleven new 4-(4-chlorophenyl)thiazol-2-amines were synthesized and, together with nine known derivatives, evaluated in vitro for inhibitory properties towards bovine pancreatic DNase I. Three compounds (18-20) inhibited DNase I with IC50 values below 100 µM, with compound 19 being the most potent (IC50 = 79.79 µM). Crystal violet, used as a positive control in the absence of a "golden standard", exhibited almost 5-fold weaker DNase I inhibition. Pharma/E-State RQSAR models clarified critical structural fragments relevant for DNase I inhibition. Molecular docking and molecular dynamics simulation defined the 4-(4-chlorophenyl)thiazol-2-amines interactions with the most important catalytic residues of DNase I. Ligand-based pharmacophore modeling and virtual screening confirmed the chemical features of 4-(4-chlorophenyl)thiazol-2-amines required for DNase I inhibition and proved the absence of structurally similar molecules in available databases. Compounds 18-20 have been shown as very potent 5-LO inhibitors with nanomolar IC50 values obtained in cell-free assay, with compound 20 being the most potent (IC50 = 50 nM). Molecular docking and molecular dynamics simulations into the binding site of 5-LO enzyme allowed us to clarify the binding mode of these dual DNase I/5-LO inhibitors. It was shown that compounds 18-20 uniquely show interactions with histidine residues in the catalytic site of DNase I and 5-LO enzyme. In the absence of potent organic DNase I inhibitors, compounds 18-20 represent a good starting point for the development of novel Alzheimer's therapeutics based on dual 5-LO and DNase I inhibition, which also have anti-inflammatory properties.


Asunto(s)
Aminas/uso terapéutico , Antiinflamatorios/uso terapéutico , Desoxirribonucleasa I/antagonistas & inhibidores , Inhibidores de la Lipooxigenasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tiazoles/química , Aminas/química , Aminas/farmacología , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacocinética , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa
3.
Molecules ; 22(1)2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28036068

RESUMEN

The arachidonic acid cascade is a key player in inflammation, and numerous well-established drugs interfere with this pathway. Previous studies have suggested that simultaneous inhibition of 5-lipoxygenase (5-LO) and soluble epoxide hydrolase (sEH) results in synergistic anti-inflammatory effects. In this study, a novel prototype of a dual 5-LO/sEH inhibitor KM55 was rationally designed and synthesized. KM55 was evaluated in enzyme activity assays with recombinant enzymes. Furthermore, activity of KM55 in human whole blood and endothelial cells was investigated. KM55 potently inhibited both enzymes in vitro and attenuated the formation of leukotrienes in human whole blood. KM55 was also tested in a cell function-based assay. The compound significantly inhibited the LPS-induced adhesion of leukocytes to endothelial cells by blocking leukocyte activation.


Asunto(s)
Antiinflamatorios/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Hidrocarburos Fluorados/farmacología , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/farmacología , Urea/análogos & derivados , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrocarburos Fluorados/síntesis química , Hidrocarburos Fluorados/química , Inflamación/tratamiento farmacológico , Leucocitos/metabolismo , Leucotrienos/biosíntesis , Lipopolisacáridos , Inhibidores de la Lipooxigenasa/química , Urea/síntesis química , Urea/química , Urea/farmacología
4.
Biochim Biophys Acta ; 1842(10): 1538-47, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107828

RESUMEN

5-Lipoxygenase (5-LOX) is the key player of pro-inflammatory leukotriene biosynthesis. Its regulatory or so-called PLAT (polycystin-1, lipoxygenase, α-toxin) domain binds allosteric modulators like calcium, membranes, coactosin-like protein and Dicer, thereby influencing 5-LOX activity at the nuclear membrane by mediating translocation. The PLAT domain may also regulate cytosolic 5-LOX activity and possibly influence microRNA metabolism. Hence, it has also evolved as a promising target for anti-inflammatory therapy. Research focusing on this substructure of 5-LOX requires an assay system based on the isolated domain. However, we found that the isolated PLAT domain was highly prone to aggregation and therefore unsuitable for interaction studies. Substitution of the single, membrane-binding tryptophan 75 with glycine reduced aggregation and substantially increased its thermal stability. Calcium interaction of the single mutant was confirmed by differential scanning fluorimetry. Moreover, crosslinking experiments demonstrated the ability of the isolated PLAT domain to bind Dicer C-terminus whereas the interaction with coactosin-like protein required the interplay of the catalytic and the PLAT domain.

5.
Arch Biochem Biophys ; 545: 179-85, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24480307

RESUMEN

5-Lipoxygenase (5-LOX) catalyzes two steps in conversion of arachidonic acid to proinflammatory leukotrienes. Lipoxygenases, including human 5-LOX, consist of an N-terminal C2-like ß-sandwich and a catalytic domain. We expressed the 5-LOX domains separately, these were found to interact in the yeast two-hybrid system. The 5-LOX structure suggested association between Arg(101) in the ß-sandwich and Asp(166) in the catalytic domain, due to electrostatic interaction as well as hydrogen bonds. Indeed, mutagenic replacements of these residues led to loss of two-hybrid interaction. Interestingly, when Arg(101) was mutated to Asp in intact 5-LOX, enzyme activity was increased. Thus, higher initial velocity of the reaction (vinit) and increased final amount of products were monitored for 5-LOX-R101D, at several different assay conditions. In the 5-LOX crystal structure, helix α2 and adjacent loops (including Asp(166)) of the 5-LOX catalytic domain has been proposed to form a flexible lid controlling access to the active site, and lid movement would be determined by bonding of lid residues to the C2-like ß-sandwich. The more efficient catalysis following disruption of the R101-D166 ionic association supports the concept of such a flexible lid in human 5-LOX.


Asunto(s)
Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Secuencia de Aminoácidos , Araquidonato 5-Lipooxigenasa/genética , Dominio Catalítico , Activación Enzimática , Humanos , Leucotrienos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Estructura Terciaria de Proteína
6.
Biochim Biophys Acta ; 1821(2): 279-86, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22137889

RESUMEN

U73122 which was originally identified as a phospholipase C inhibitor represents a potent direct inhibitor of purified 5-lipoxygenase (5-LO) with an IC50 value of 30 nM. 5-LO catalyzes the conversion of arachidonic acid (AA) into leukotrienes which represent mediators involved in inflammatory and allergic reactions and in host defense reactions against microorganisms. Since the efficient inhibition of the human 5-LO enzyme depended on the thiol reactivity of the maleinimide group of U73122, we used this property to identify cysteine residues in the 5-LO protein that are important for 5-LO inhibition by U73122. We found by MALDI-MS that U73122 covalently binds to cysteine residues 99, 159, 248, 264, 416 and 449. Mutation of Cys416 to serine strongly reduces inhibition of 5-LO by U73122 and the additional mutation of three cysteines close to Cys416 further impairs 5-LO inhibition by the compound. Wash out experiments with U73122 and 5-LO indicated an irreversible binding of U73122. Together, our data suggest that the area around Cys416 which is close to the proposed AA entry channel to the active site is an interesting target for the development of new 5-LO inhibitors.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Cisteína/metabolismo , Estrenos/farmacología , Pirrolidinonas/farmacología , Adulto , Animales , Araquidonato 5-Lipooxigenasa/química , Ácido Araquidónico/farmacología , Estrenos/química , Células HeLa , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Ratones , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Pirrolidinonas/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Sulfhidrilo/metabolismo
7.
ChemMedChem ; 18(14): e202300206, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37160667

RESUMEN

The presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids. The di-tert-butylphenol derivative tebufelone represents a selective dual COX-2/5-LO inhibitor. The incorporation of meta- or para-carborane into the tebufelone scaffold resulted in eight carborane-based tebufelone analogs that show no COX inhibition but 5-LO inhibitory activity in vitro. Cell viability studies on HT29 colon adenocarcinoma cells revealed that the observed antiproliferative effect of the para-carborane analogs of tebufelone is enhanced by structural modifications that include chain elongation in combination with introduction of a methylene spacer resulting in higher anticancer activity compared to tebufelone. Hence, this strategy proved to be a promising approach to design potent 5-LO inhibitors with potential application as cytostatic agents.


Asunto(s)
Adenocarcinoma , Boranos , Neoplasias del Colon , Humanos , Ciclooxigenasa 2/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa/química , Microambiente Tumoral
8.
Chem Biol Interact ; 381: 110542, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37224992

RESUMEN

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC50 = 346.39 µM). Two compounds (5 and 29) stood out as the most potent DNase I inhibitors, with IC50 values below 100 µM. The 5-LO inhibitory properties of the investigated derivatives were also analyzed due to the importance of this enzyme in the development of neurodegenerative diseases. Compounds (12 and 29) proved to be the most prominent new 5-LO inhibitors, with IC50 values of 60 nM and 56 nM, respectively, in cell-free assay. Four compounds, including one previously (41) and three newly (12, 29 and 30) synthesized, have the ability to inhibit DNase I with IC50 values below 200 µM and 5-LO with IC50 values below 150 nM in cell-free assay. Molecular docking and molecular dynamics simulations were used to clarify DNase I and 5-LO inhibitory properties of the most potent representatives at the molecular level. The newly synthesized compound 29 (4-((4-(3-bromo-4-morpholinophenyl)thiazol-2-yl)amino)phenol) represents the most promising dual DNase I and 5-LO inhibitor, as it inhibited 5-LO in the nanomolar and DNase I in the double-digit micromolar concentration ranges. The results obtained in the present study, together with our recently published results for 4-(4-chlorophenyl)thiazol-2-amines, represent a good basis for the development of new neuroprotective therapeutics based on dual inhibition of DNase I and 5-LO.


Asunto(s)
Fármacos Neuroprotectores , Tiazoles , Animales , Bovinos , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Araquidonato 5-Lipooxigenasa , Desoxirribonucleasa I , Inhibidores de la Lipooxigenasa/farmacología , Estructura Molecular
9.
Bioorg Med Chem Lett ; 22(5): 1969-75, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22326163

RESUMEN

A novel class of 5-lipoxygenase (5-LO) inhibitors characterized by a central imidazo[1,2-a]pyridine scaffold, a cyclohexyl moiety and an aromatic system, is presented. This scaffold was identified in a virtual screening study and exhibits promising inhibitory potential on the 5-LO. Here, we investigate the structure-activity relationships of this compound class. With N-cyclohexyl-6-methyl-2-(4-morpholinophenyl)imidazo[1,2-a]pyridine-3-amine (14), we identified a potent 5-LO inhibitor (IC(50)=0.16µM (intact cells) and 0.1µM (cell-free)), which may possess potential as an effective lead compound intervening with inflammatory diseases and certain types of cancer.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Piridinas/química , Piridinas/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/enzimología , Inhibidores de la Lipooxigenasa/síntesis química , Piridinas/síntesis química , Relación Estructura-Actividad
10.
Bioorg Med Chem ; 20(11): 3575-83, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551629

RESUMEN

A class of 5-lipoxygenase (5-LO) inhibitors characterized by a central 5-benzylidene-2-phenyl-thiazolinone scaffold was synthesized as a new series of molecular modifications and extensions of a previously reported series. Compounds were tested in a cell-based and a cell-free assay and furthermore evaluated for their influence on cell viability. The presented substituted thiazolinone scaffold turned out to be essential for both the 5-LO inhibitory activity and the non-cytotoxic profile. With (Z)-5-(4-methoxybenzylidene)-2-(naphthalen-2-yl)-5H-thiazol-4-one (2k, ST1237), a potent, direct, non-cytotoxic 5-LO inhibitor with IC(50) of 0.08 µM and 0.12 µM (cell-free assay and intact cells), we present a promising lead optimization and development for further investigations as novel anti-inflammatory drug.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/farmacología , Tiazoles/química , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Neutrófilos/efectos de los fármacos , Relación Estructura-Actividad
11.
ChemMedChem ; 17(5): e202100694, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994078

RESUMEN

A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 µM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3 , histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.


Asunto(s)
Butirilcolinesterasa , Catepsina B , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Desoxirribonucleasa I/química , Desoxirribonucleasa I/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Oxiquinolina , Relación Estructura-Actividad
12.
ChemMedChem ; 17(1): e202100588, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34694057

RESUMEN

12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency. An emerging approach to enhance metabolic stability of carbon-based pharmaceuticals is the use of metabolically stable, non-toxic boron clusters, such as dicarba-closo-dodecaborane(12)s (carboranes) as phenyl mimetics. Therefore, the unsubstituted phenyl ring of baicalein was replaced by meta-carborane, resulting in borcalein, the carborane analogue of baicalein. This substitution resulted in a decreased inhibitory activity toward 12-lipoxygenase, but led to increased toxicity in melanoma (A375, B16, B16F10) and colon cancer cell lines (SW480, HCT116, CT26CL25) with decreased tumour selectivity in comparison to baicalein. Surprisingly, borcalein displays a different mechanism of cytotoxicity with increased intracellular production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO).


Asunto(s)
Antineoplásicos/farmacología , Araquidonato 12-Lipooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Flavanonas/síntesis química , Flavanonas/química , Humanos , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
Biol Chem ; 392(12): 1097-111, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22050225

RESUMEN

Human 5-lipoxygenase (5-LO) can form dimers as shown here via native gel electrophoresis, gel filtration chromatography and LILBID (laser induced liquid bead ion desorption) mass spectrometry. After glutathionylation of 5-LO by diamide/glutathione treatment, dimeric 5-LO was no longer detectable and 5-LO almost exclusively exists in the monomeric form which showed full catalytic activity. Incubation of 5-LO with diamide alone led to a disulfide-bridged dimer and to oligomer formation which displays a strongly reduced catalytic activity. The bioinformatic analysis of the 5-LO surface for putative protein-protein interaction domains and molecular modeling of the dimer interface suggests a head to tail orientation of the dimer which also explains the localization of previously reported ATP binding sites. This interface domain was confirmed by the observation that 5-LO dimer formation and inhibition of activity by diamide was largely prevented when four cysteines (C159S, C300S, C416S, C418S) in this domain were mutated to serines.


Asunto(s)
Araquidonato 5-Lipooxigenasa/química , Multimerización de Proteína , Araquidonato 5-Lipooxigenasa/aislamiento & purificación , Araquidonato 5-Lipooxigenasa/metabolismo , Diamida/química , Electroforesis Capilar , Glutatión/química , Humanos , Espectrometría de Masas , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
14.
Nat Chem Biol ; 5(8): 585-92, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19561619

RESUMEN

The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which in turn allows correlation of this chemical space with the investigated bioactivity and further compound design. Brachiation along the branches of such trees from structurally complex to simple scaffolds with retained yet varying bioactivity is feasible at high frequency for the five major pharmaceutically relevant target classes and allows for the identification of new inhibitor types for a given target. We provide proof of principle by identifying new active scaffolds for 5-lipoxygenase and the estrogen receptor ERalpha.


Asunto(s)
Química Farmacéutica/métodos , Simulación por Computador , Bases de Datos Factuales , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Araquidonato 5-Lipooxigenasa/química , Receptor alfa de Estrógeno/química , Unión Proteica , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
15.
J Immunol ; 183(5): 3433-42, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19648270

RESUMEN

Frankincense preparations, used in folk medicine to cure inflammatory diseases, showed anti-inflammatory effectiveness in animal models and clinical trials. Boswellic acids (BAs) constitute major pharmacological principles of frankincense, but their targets and the underlying molecular modes of action are still unclear. Using a BA-affinity Sepharose matrix, a 26-kDa protein was selectively precipitated from human neutrophils and identified as the lysosomal protease cathepsin G (catG) by mass spectrometry (MALDI-TOF) and by immunological analysis. In rigid automated molecular docking experiments BAs tightly bound to the active center of catG, occupying the same part of the binding site as the synthetic catG inhibitor JNJ-10311795 (2-[3-[methyl[1-(2-naphthoyl)piperidin-4-yl]amino]carbonyl)-2-naphthyl]-1-(1-naphthyl)-2-oxoethylphosphonic acid). BAs potently suppressed the proteolytic activity of catG (IC(50) of approximately 600 nM) in a competitive and reversible manner. Related serine proteases were significantly less sensitive against BAs (leukocyte elastase, chymotrypsin, proteinase-3) or not affected (tryptase, chymase). BAs inhibited chemoinvasion but not chemotaxis of challenged neutrophils, and they suppressed Ca(2+) mobilization in human platelets induced by isolated catG or by catG released from activated neutrophils. Finally, oral administration of defined frankincense extracts significantly reduced catG activities in human blood ex vivo vs placebo. In conclusion, we show that catG is a functional and pharmacologically relevant target of BAs, and interference with catG could explain some of the anti-inflammatory properties of frankincense.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Boswellia/fisiología , Catepsinas/metabolismo , Serina Endopeptidasas/metabolismo , Triterpenos/farmacología , Adulto , Secuencia de Aminoácidos , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Unión Competitiva , Boswellia/metabolismo , Catepsina G , Catepsinas/antagonistas & inhibidores , Catepsinas/sangre , Sistemas de Liberación de Medicamentos , Humanos , Hidrólisis/efectos de los fármacos , Datos de Secuencia Molecular , Extractos Vegetales/administración & dosificación , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Unión Proteica , Serina Endopeptidasas/sangre , Triterpenos/administración & dosificación , Triterpenos/metabolismo
16.
Front Pharmacol ; 12: 782584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126121

RESUMEN

5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the pan-LO inhibitor nordihydroguaiaretic acid interfere with prostaglandin E2 (PGE2) release into the supernatants of cytokine-stimulated (TNFα/IL-1ß) HeLa cervix carcinoma, A549 lung cancer as well as HCA-7 colon carcinoma cells with similar potencies compared to their LT inhibitory activities (IC50 values ranging from 0.1-9.1 µM). In addition, AA-861, BWA4C, CJ-13,610 and zileuton concentration-dependently inhibited bacterial lipopolysaccharide triggered prostaglandin (PG) release into human whole blood. Western Blot analysis revealed that inhibition of expression of enzymes involved in PG synthesis was not part of the underlying mechanism. Also, liberation of arachidonic acid which is the substrate for PG synthesis as well as PGH2 and PGE2 formation were not impaired by the compounds. However, accumulation of intracellular PGE2 was found in the inhibitor treated HeLa cells suggesting inhibition of PG export as major mechanism. Further, experiments showed that the PG exporter ATP-binding cassette transporter multidrug resistance protein 4 (MRP-4) is targeted by the inhibitors and may be involved in the 5-LO inhibitor-mediated PGE2 inhibition. In conclusion, the pharmacological effects of a number of 5-LO inhibitors are compound-specific and involve the potent inhibition of PGE2 export. Results from experimental models on the role of 5-LO in inflammation and pain using 5-LO inhibitors may be misleading and their use as pharmacological tools in experimental models has to be revisited. In addition, 5-LO inhibitors may serve as new scaffolds for the development of potent prostaglandin export inhibitors.

17.
Biochem J ; 425(1): 265-74, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19807693

RESUMEN

The activity of 5-LO (5-lipoxygenase), which catalyses two initial steps in the biosynthesis of pro-inflammatory LTs (leukotrienes), is strictly regulated. One recently discovered factor, CLP (coactosin-like protein), binds 5-LO and promotes LT formation. In the present paper we report that CLP also stabilizes 5-LO and prevents non-turnover inactivation of the enzyme in vitro. Mutagenesis of tryptophan residues in the 5-LO beta-sandwich showed that 5-LO-Trp102 is essential for binding to CLP, and for CLP to support 5-LO activity. In addition, the stabilizing effect also depended on binding between CLP and 5-LO. After mutations which prevent interaction (5-LO-W102A or CLP-K131A), the protective effect of CLP was absent. A calculated 5-LO-CLP docking model indicates that CLP may bind to additional residues in both domains of 5-LO, thus possibly stabilizing the 5-LO structure. To obtain further support for binding between CLP and 5-LO in a living cell, subcellular localization of CLP and 5-LO in the monocytic cell line Mono Mac 6 was determined. In these cells, 5-LO associates with a nuclear fraction only when differentiated cells are primed with phorbol ester and stimulated with ionophore. The same pattern of redistribution was found for CLP, indicating that the two proteins associate with the nucleus in a co-ordinated fashion. The results of the present study support a role for CLP as a chaperoning scaffold factor, influencing both the stability and the activity of 5-LO.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Chaperonas Moleculares/metabolismo , Triptófano/metabolismo , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/genética , Ácido Araquidónico/metabolismo , Sitios de Unión/genética , Western Blotting , Dominio Catalítico , Línea Celular , Núcleo Celular , Estabilidad de Enzimas , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Monocitos/citología , Monocitos/metabolismo , Mutación , Fosfatidilcolinas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Termolisina/metabolismo , Triptófano/genética , Triptófano/fisiología
18.
J Med Chem ; 63(20): 11498-11521, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33044073

RESUMEN

Inhibition of multiple enzymes of the arachidonic acid cascade leads to synergistic anti-inflammatory effects. Merging of 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH) pharmacophores led to the discovery of a dual 5-LOX/sEH inhibitor, which was subsequently optimized in terms of potency toward both targets and metabolic stability. The optimized lead structure displayed cellular activity in human polymorphonuclear leukocytes, oral bioavailability, and target engagement in vivo and demonstrated profound anti-inflammatory and anti-fibrotic efficiency in a kidney injury model caused by unilateral ureteral obstruction in mice. These results pave the way for investigating the therapeutic potential of dual 5-LOX/sEH inhibitors in other inflammation- and fibrosis-related disease models.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Araquidonato 5-Lipooxigenasa/metabolismo , Diseño de Fármacos , Epóxido Hidrolasas/antagonistas & inhibidores , Inhibidores de la Lipooxigenasa/síntesis química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/genética , Células Cultivadas , Epóxido Hidrolasas/genética , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Estructura Molecular , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Unión Proteica , Ratas , Relación Estructura-Actividad
19.
J Comput Chem ; 30(5): 761-71, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18727161

RESUMEN

We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential.


Asunto(s)
Descubrimiento de Drogas/métodos , Alineación de Secuencia/métodos , Inhibidores Enzimáticos/química , Ligandos , Inhibidores de la Lipooxigenasa , Estudios Prospectivos , Estudios Retrospectivos , Bibliotecas de Moléculas Pequeñas
20.
Cell Chem Biol ; 26(1): 60-70.e4, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30415966

RESUMEN

5-Lipoxygenase (5-LO) initiates the biosynthesis of pro-inflammatory leukotrienes from arachidonic acid, which requires the nuclear membrane-bound 5-LO-activating protein (FLAP) for substrate transfer. Here, we identified human 5-LO as a molecular target of melleolides from honey mushroom (Armillaria mellea). Melleolides inhibit 5-LO via an α,ß-unsaturated aldehyde serving as Michael acceptor for surface cysteines at the substrate entrance that are revealed as molecular determinants for 5-LO activity. Experiments with 5-LO mutants, where select cysteines had been replaced by serine, indicated that the investigated melleolides suppress 5-LO product formation via two distinct modes of action: (1) by direct interference with 5-LO activity involving two or more of the cysteines 159, 300, 416, and 418, and (2) by preventing 5-LO/FLAP assemblies involving selectively Cys159 in 5-LO. Interestingly, replacement of Cys159 by serine prevented 5-LO/FLAP assemblies as well, implying Cys159 as determinant for 5-LO/FLAP complex formation at the nuclear membrane required for leukotriene biosynthesis.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Armillaria/química , Cisteína/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Sesquiterpenos/farmacología , Células A549 , Relación Dosis-Respuesta a Droga , Humanos , Inhibidores de la Lipooxigenasa/química , Estructura Molecular , Sesquiterpenos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA