Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603745

RESUMEN

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Asunto(s)
COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacología , Araquidonato 15-Lipooxigenasa/genética , Inflamación , Dexametasona/farmacología , Lípidos
2.
J Immunol ; 210(10): 1564-1575, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042680

RESUMEN

Tuberculosis caused by Mycobacterium tuberculosis is a leading cause of death globally and a major health concern. In humans, macrophages are the first line invaded by M. tuberculosis. Upon infection, macrophages upregulate cyclooxygenase-2 (COX-2) expression and consequently elevate the formation of PGs, including PGE2 and PGD2. Although the role of proinflammatory PGE2 in M. tuberculosis infection has been reported, the roles of PGJ2 and 15-deoxy-PGJ2 (collectively named J2-PGs), the metabolites of PGD2 with anti-inflammatory features, remain elusive. In this study, we show that M. tuberculosis (H37Rv strain)-conditioned medium stimulates human monocyte-derived macrophages (MDMs) to elevate COX-2 expression along with robust generation of PGJ2, exceeding PGD2 formation, and to a minor extent also of 15-deoxy-PGJ2. Of interest, in M1-MDM phenotypes, PGJ2 and 15-deoxy-PGJ2 decreased M. tuberculosis (H37Rv strain)-conditioned medium-induced COX-2 expression and related PG formation by a negative feedback loop. Moreover, these J2-PGs downregulated the expression of the proinflammatory cytokines IL-6, IL-1ß, and IFN-γ, but elevated the anti-inflammatory cytokine IL-10 and the M2 markers arginase-1 and CD163. These anti-inflammatory effects of J2-PGs in M1-MDM correlated with impaired activation of TGF-ß-activated kinase 1/NF-κB/MAPK pathways. Finally, we found that J2-PGs regulate COX-2 expression, at least partially, via PGD2 receptor (DP1) and chemoattractant receptor homologue expressed on Th2 cells/DP2 receptors, but independent of the J2-PG receptor peroxisome proliferator-activated receptor-γ. Together, our findings reveal that M. tuberculosis induces COX-2 expression in human M1-MDMs, along with robust formation of J2-PGs that mediates anti-inflammatory effects via a negative feedback loop.


Asunto(s)
Mycobacterium tuberculosis , Prostaglandina D2 , Humanos , Prostaglandina D2/metabolismo , Mycobacterium tuberculosis/metabolismo , Ciclooxigenasa 2 , Dinoprostona , Retroalimentación , Medios de Cultivo Condicionados , Macrófagos/metabolismo , Citocinas , Antiinflamatorios
3.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744994

RESUMEN

The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.


Asunto(s)
Epóxido Hidrolasas , Quinazolinonas , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos , Epóxido Hidrolasas/metabolismo , Receptores de Droga , Reproducibilidad de los Resultados , Solubilidad
4.
Pharmacol Res ; 167: 105556, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812006

RESUMEN

The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Leucotrienos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Triterpenos Pentacíclicos/farmacología , Animales , Antiinflamatorios/química , Araquidonato 5-Lipooxigenasa/metabolismo , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/química , Masculino , Ratones , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/química , Tripterygium/química
5.
J Sep Sci ; 44(19): 3700-3716, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34355502

RESUMEN

Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2  = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.


Asunto(s)
Cafeína/análisis , Cromatografía con Fluido Supercrítico/métodos , Vaciamiento Gástrico/fisiología , Espectrometría de Masas/métodos , Saliva/química , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
6.
Molecules ; 24(10)2019 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-31109124

RESUMEN

Chiral metabolites of ketamine exerting rapid-onset yet sustained antidepressant effects may be marketed directly in the future, but require chemo- and enantio-selective chromatographic methods for quality assurance and control. The chromatographic behavior of S-/R-ketamine, S-/R-norketamine, S-/R-dehydronorketamine, and (2R,6R)-/(2S,6S)-hydroxynorketamine in supercritical fluid chromatography (SFC) was investigated computationally and experimentally with the aim of identifying problematic pairs of enantiomers and parameters for chiral resolution. Retention on three different polysaccharide-based chiral stationary phases (Lux Amylose-2, i-Amylose-3, and i-Cellulose-5) provided new information on the significance of halogen atoms as halogen bond donors and hydrogen bond acceptors for enantioselectivity, which could be corroborated in silico by molecular docking studies. Modifiers inversely affected enantioselectivity and retention. Methanol yielded lower run times but superior chiral resolution compared to 2-propanol. Lower temperatures than those conventionally screened did not impair phase homogeneity but improved enantioresolution, at no cost to reproducibility. Thus, sub-ambient temperature subcritical fluid chromatography (SubFC), essentially low-temperature HPLC with subcritical CO2, was applied. The optimization of the SubFC method facilitated the chiral separation of ketamine and its metabolites, which was applied in combination with direct injection and online supercritical fluid extraction to determine the purity of pharmaceutical ketamine formulations for proof of concept.


Asunto(s)
Antidepresivos/aislamiento & purificación , Antidepresivos/metabolismo , Ketamina/aislamiento & purificación , Ketamina/metabolismo , Amilosa/química , Dióxido de Carbono/química , Celulosa/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía con Fluido Supercrítico/métodos , Simulación del Acoplamiento Molecular , Polisacáridos/química , Reproducibilidad de los Resultados , Estereoisomerismo , Propiedades de Superficie , Temperatura
7.
Beilstein J Org Chem ; 15: 2170-2183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598174

RESUMEN

The use of light as an external trigger to change ligand shape and as a result its bioactivity, allows the probing of pharmacologically relevant systems with spatiotemporal resolution. A hetero-stilbene lead resulting from the screening of a compound that was originally designed as kinase inhibitor served as a starting point for the design of photoswitchable sirtuin inhibitors. Because the original stilbenoid structure exerted unfavourable photochemical characteristics it was remodelled to its heteroarylic diazeno analogue. By this intramolecular azologization, the shape of the molecule was left unaltered, whereas the photoswitching ability was improved. As anticipated, the highly analogous compound showed similar activity in its thermodynamically stable stretched-out (E)-form. Irradiation of this isomer triggers isomerisation to the long-lived (Z)-configuration with a bent geometry causing a considerably shorter end-to-end distance. The resulting affinity shifts are intended to enable real-time photomodulation of sirtuins in vitro.

8.
J Gen Virol ; 96(8): 2099-2103, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25957096

RESUMEN

Ticks transmit viruses responsible for severe emerging and re-emerging infectious diseases, some of which have a significant impact on public health. In Japan, little is known about the distribution of tick-borne viruses. In this study, we collected and tested ticks to investigate the distribution of tick-borne arboviruses in Kyoto, Japan, and isolated the first Thogoto virus (THOV) to our knowledge from Haemaphysalis longicornis in far-eastern Asia. The Japanese isolate was genetically distinct from a cluster of other isolates from Africa, Europe and the Middle East. Various cell lines derived from mammals and ticks were susceptible to the isolate, but it was not pathogenic in mice. These results advance understanding of the distribution and ecology of THOV.


Asunto(s)
Vectores Arácnidos/virología , Ixodidae/virología , Thogotovirus/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/virología , Animales , Femenino , Humanos , Japón , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Thogotovirus/clasificación , Thogotovirus/genética , Enfermedades por Picaduras de Garrapatas/transmisión
9.
Chempluschem ; : e202400234, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753468

RESUMEN

Computational techniques accelerate drug discovery by identifying bioactive compounds for specific targets, optimizing molecules with moderate activity, or facilitating the repositioning of inactive items onto new targets. Among them, the Inverse Virtual Screening (IVS) approach is aimed at the evaluation of one or a small set of molecules against a panel of targets for addressing target identification. In this work, a focused library of benzothiazole-based compounds was re-investigated by IVS. Four items, originally synthesized and tested on bromodomain-containing protein 9 (BRD9) but yielding poor binding, were critically re-analyzed, disclosing only a partial fit with 3D structure-based pharmacophore models, which, in the meanwhile, were developed for this target. Afterwards, these compounds were re-evaluated through IVS on a panel of proteins involved in inflammation and cancer, identifying soluble epoxide hydrolase (sEH) as a putative interacting target. Three items were subsequently confirmed as able to interfere with sEH activity, leading to inhibition percentages spanning from 70 % up to 30 % when tested at 10 µM. Finally, one benzothiazole-based compound emerged as the most promising inhibitor featuring an IC50 in the low micromolar range (IC50=6.62±0.13 µM). Our data confirm IVS as a predictive tool for accelerating the target identification and repositioning processes.

10.
Pharmaceutics ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675165

RESUMEN

The effective pharmacological treatment of inflamed wounds such as pyoderma gangraenosum remains challenging, as the systemic application of suitable drugs such as glucocorticoids is compromised by severe side effects and the inherent difficulties of wounds as drug targets. Furthermore, conventional semi-solid formulations are not suitable for direct application to open wounds. Thus, the treatment of inflamed wounds could considerably benefit from the development of active wound dressings for the topical administration of anti-inflammatory drugs. Although bacterial cellulose appears to be an ideal candidate for this purpose due to its known suitability for advanced wound care and as a drug delivery system, the incorporation of poorly water-soluble compounds into the hydrophilic material still poses a problem. The use of microemulsions could solve that open issue. The present study therefore explores their use as a novel approach to incorporate poorly water-soluble glucocorticoids into bacterial cellulose. Five microemulsion formulations were loaded with hydrocortisone or dexamethasone and characterized in detail, demonstrating their regular microstructure, biocompatibility and shelf-life stability. Bacterial cellulose was successfully loaded with the formulations as confirmed by transmission electron microscopy and surprisingly showed homogenous incorporation, even of w/o type microemulsions. High and controllable drug permeation through Strat-M® membranes was observed, and the anti-inflammatory activity for permeated glucocorticoids was confirmed in vitro. This study presents a novel approach for the development of anti-inflammatory wound dressings using bacterial cellulose in combination with microemulsions.

11.
ChemMedChem ; 18(14): e202300145, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37170841

RESUMEN

Flupirtine and retigabine were essential drugs to combat pain and epilepsy. However, the Kv 7 potassium channel openers are fraught with hepatotoxicity and tissue discoloration, respectively, limiting their therapeutic value. Both adverse events are likely due to reactive metabolites arising from oxidative metabolism. Designing safer analogues lacking the structural elements leading to described side effects is an active area of current research. One of the main metabolites of flupirtine is the biologically inactive 4-fluorohippuric acid. Hitherto unexplained, the proposed metabolic pathway leading to the formation of 4-fluorohippuric acid from flupirtine is verified here. Through the use of eighteen flupirtine analogues, mechanistic details of this pathway could be elucidated. A possible connection with the in vitro hepatotoxicity of the flupirtine analogues and the levels of 4-fluorobenzoic acid formed in enzyme incubations was examined by correlation analysis. These findings provide important information for the design of new flupirtine analogues as potential drug candidates.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Esterasas , Humanos , Analgésicos/farmacología , Aminopiridinas/toxicidad , Aminopiridinas/química , Relación Estructura-Actividad
12.
Fitoterapia ; 166: 105439, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716798

RESUMEN

Rhodiola rosea roots and rhizomes hold an important place in the folk medicines of Russia, Scandinavia, Mongolia, and China as a health supplement for stimulating the nervous system, enhancing physical and mental performances, and nowadays they constitute the active ingredient in many popular commercial preparations sold worldwide as food additives, pharmaceutical remedies, and drinks. This study was aimed at providing a detailed phytochemical characterization of the Rhodiola 5%, a commercially available extract of R. rosea roots, and resulted in the characterization of 18 secondary metabolites, including 13 polyphenols and 6 terpenoids, and in the discovery of the new rhodiosidin (5), the first R. rosea metabolite to show both terpenoid and cinnamoyl moieties. The 5-lipoxygenase inhibiting activity of the main components was characterized and disclosed that rosiridin (6), kenposide A and rosavins are mainly responsible for this activity of the extract.


Asunto(s)
Rhodiola , Rhodiola/química , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Antiinflamatorios/farmacología , Terpenos/análisis
13.
ACS Med Chem Lett ; 14(1): 26-34, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36655121

RESUMEN

The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.

14.
J Inflamm Res ; 15: 3285-3304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676971

RESUMEN

Background and Purpose: Celastrol (CS) is a major active ingredient of the Chinese/Asian herb Tripterygium wilfordii that is frequently used as phytomedicine to treat inflammation and autoimmune diseases. We showed before that short-term exposure to CS (1 µM) favorably impacts the biosynthesis of inflammation-related lipid mediators (LM) in human polarized macrophages by modulating the activities of different lipoxygenases (LOXs). However, whether CS regulates the expression of LOXs and other related LM-biosynthetic enzymes during macrophage polarization is unknown. Here, we investigated how CS affects LM-biosynthetic enzyme expression on the protein level and studied concomitant LM signature profiles during polarization of human monocyte-derived macrophages (MDM) towards M1- and M2-like phenotypes. Methods and Results: We used LM metabololipidomics to study the long-term effects of CS on LM profile signatures after manipulation of human monocyte-derived macrophages (MDM) during polarization. Exposure of MDM to low concentrations of CS (ie, 0.2 µM) during polarization to an inflammatory M1 phenotype potently suppressed the formation of pro-inflammatory cyclooxygenase (COX)- and 5-LOX-derived LM, especially prostaglandin (PG)E2. Notably, gene and enzyme expression of COX-2 and microsomal PGE2 synthase (mPGES)-1 as well as M1 markers were strongly decreased by CS during M1-MDM polarization, along with impaired activation of nuclear factor-κB and p38 mitogen-activated protein kinase. During IL-4-induced M2 polarization, CS decreased the capacity of the resulting M2-MDM to generate pro-inflammatory COX and 5-LOX products as well but it also reduced the formation of 12/15-LOX products and specialized pro-resolving mediators, without affecting the levels of liberated fatty acid substrates. Conclusion: Depending on the timing and concentration, CS not only favorably affects LOX activities in macrophages but also the expression of LM-biosynthetic enzymes during macrophage polarization connected to changes of inflammation-related LM which might be of relevance for potential application of CS to treat inflammatory disorders.

15.
Biomolecules ; 12(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053247

RESUMEN

Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.


Asunto(s)
Salvia miltiorrhiza , Abietanos , Animales , Ciclooxigenasa 2 , Ratones , Fenantrenos , Prostaglandina-E Sintasas , Prostaglandinas
16.
ChemMedChem ; 17(22): e202200327, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36111583

RESUMEN

We identified 2,4-dinitro-biphenyl-based compounds as new inhibitors of leukotriene C4 synthase (LTC4 S) and 5-lipoxygenase-activating protein (FLAP), both members of the "Membrane Associated Proteins in Eicosanoid and Glutathione metabolism" (MAPEG) family involved in the biosynthesis of pro-inflammatory eicosanoids. By molecular docking we evaluated the putative binding against the targets of interest, and by applying cell-free and cell-based assays we assessed the inhibition of LTC4 S and FLAP by the small molecules at low micromolar concentrations. The present results integrate the previously observed inhibitory profile of the tested compounds against another MAPEG member, i. e., microsomal prostaglandin E2 synthase (mPGES)-1, suggesting that the 2,4-dinitro-biphenyl scaffold is a suitable molecular platform for a multitargeting approach to modulate pro-inflammatory mediators in inflammation and cancer treatment.


Asunto(s)
Compuestos de Bifenilo , Glutatión Transferasa , Simulación del Acoplamiento Molecular , Proteínas Activadoras de la 5-Lipooxigenasa , Compuestos de Bifenilo/farmacología , Prostaglandina-E Sintasas/metabolismo
17.
Biochem Pharmacol ; 195: 114825, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762841

RESUMEN

Specialized pro-resolving mediators (SPMs) comprise lipid mediators (LMs) produced from polyunsaturated fatty acids (PUFAs) via stereoselective oxygenation particularly involving 12/15-lipoxygenases (LOXs). In contrast to pro-inflammatory LMs such as leukotrienes formed by 5-LOX and prostaglandins formed by cyclooxygenases, the SPMs have anti-inflammatory and inflammation-resolving properties. Although glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) that block prostaglandin production are still prime therapeutics for inflammation-related diseases despite severe side effects, novel concepts focus on SPMs as immunoresolvents for anti-inflammatory pharmacotherapy. Here, we studied the natural chalcone MF-14 and the corresponding dihydrochalcone MF-15 from Melodorum fruticosum, for modulating the biosynthesis of LM including leukotrienes, prostaglandins, SPM and their 12/15-LOX-derived precursors in human monocyte-derived macrophage (MDM) M1- and M2-like phenotypes. In MDM challenged with Staphylococcus aureus-derived exotoxins both compounds (10 µM) significantly suppressed 5-LOX product formation but increased the biosynthesis of 12/15-LOX products, especially in M2-MDM. Intriguingly, in resting M2-MDM, MF-14 and MF-15 strikingly evoked generation of 12/15-LOX products and of SPMs from liberated PUFAs, along with translocation of 15-LOX-1 to membranous compartments. Enhanced 12/15-LOX product formation by the chalcones was evident also when exogenous PUFAs were supplied, excluding increased substrate supply as sole underlying mechanism. Rather, MF-14 and MF-15 stimulate the activity of 15-LOX-1, supported by experiments with HEK293 cells transfected with either 5-LOX, 15-LOX-1 or 15-LOX-2. Together, the natural chalcone MF-14 and the dihydrochalcone MF-15 favorably modulate LM biosynthesis in human macrophages by suppressing pro-inflammatory leukotrienes but stimulating formation of SPMs by differential interference with 5-LOX and 15-LOX-1.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Chalcona/farmacología , Leucotrienos/metabolismo , Macrófagos/efectos de los fármacos , Prostaglandinas/metabolismo , Adulto , Annonaceae/química , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chalcona/química , Chalconas/química , Chalconas/farmacología , Células HEK293 , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/clasificación , Macrófagos/metabolismo , Estructura Molecular , Extractos Vegetales/farmacología
18.
Biomolecules ; 11(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067705

RESUMEN

Tripterygium wilfordii glycosides (TWG) is a traditional Chinese medicine with effectiveness against rheumatoid arthritis (RA), supported by numerous clinical trials. Lipid mediators (LM) are biomolecules produced from polyunsaturated fatty acids mainly by cyclooxygenases (COX) and lipoxygenases (LOX) in complex networks which regulate inflammation and immune responses and are strongly linked to RA. The mechanism by which TWG affects LM networks in RA treatment remains elusive. Employing LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed striking modulation of LM pathways by TWG in human monocyte-derived macrophage (MDM) phenotypes. In inflammatory M1-MDM, TWG (30 µg/mL) potently suppressed agonist-induced formation of 5-LOX products which was confirmed in human PMNL and traced back to direct inhibition of 5-LOX (IC50 = 2.9 µg/mL). TWG also efficiently blocked thromboxane formation in M1-MDM without inhibiting other prostanoids and COX enzymes. Importantly, in anti-inflammatory M2-MDM, TWG (30 µg/mL) induced pronounced formation of specialized pro-resolving mediators (SPM) and related 12/15-LOX-derived SPM precursors, without COX and 5-LOX activation. During MDM polarization, TWG (1 µg/mL) decreased the capacity to generate pro-inflammatory 5-LOX and COX products, cytokines and markers for M1 phenotypes. Together, suppression of pro-inflammatory LM but SPM induction may contribute to the antirheumatic properties of TWG.


Asunto(s)
Antirreumáticos/administración & dosificación , Araquidonato 5-Lipooxigenasa/metabolismo , Glicósidos/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Tripterygium/química , Células A549 , Antirreumáticos/farmacología , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Lipidómica/métodos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Prostaglandinas/metabolismo , Espectrometría de Masas en Tándem , Tromboxanos
19.
Adv Sci (Weinh) ; 8(16): e2100832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34176236

RESUMEN

The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.


Asunto(s)
Productos Biológicos/química , Inhibidores de la Ciclooxigenasa/síntesis química , Diseño de Fármacos/métodos , Descubrimiento de Drogas/métodos , Pirroles/química , Inteligencia Artificial , Inhibidores de la Ciclooxigenasa/química
20.
Eur J Med Chem ; 224: 113693, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34315041

RESUMEN

The multiple inhibition of biological targets involved in pro-inflammatory eicosanoid biosynthesis represents an innovative strategy for treating inflammatory disorders in light of higher efficacy and safety. Herein, following a multidisciplinary protocol involving virtual combinatorial screening, chemical synthesis, and in vitro and in vivo validation of the biological activities, we report the identification of 1,2,4-oxadiazole-based eicosanoid biosynthesis multi-target inhibitors. The multidisciplinary scientific approach led to the identification of three 1,2,4-oxadiazole hits (compounds 1, 2 and 5), all endowed with IC50 values in the low micromolar range, acting as 5-lipoxygenase-activating protein (FLAP) antagonists (compounds 1 and 2), and as a multi-target inhibitor (compound 5) of arachidonic acid cascade enzymes, namely cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1). Moreover, our in vivo results demonstrate that compound 5 is able to attenuate leukocyte migration in a model of zymosan-induced peritonitis and to modulate the production of IL-1ß and TNF-α. These results are of interest for further expanding the chemical diversity around the 1,2,4-oxadiazole central core, enabling the identification of novel anti-inflammatory agents characterized by a favorable pharmacological profile and considering that moderate interference with multiple targets might have advantages in re-adjusting homeostasis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Desarrollo de Medicamentos , Eicosanoides/biosíntesis , Inhibidores Enzimáticos/farmacología , Oxadiazoles/farmacología , Peritonitis/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Araquidonato 5-Lipooxigenasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Masculino , Ratones , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Peritonitis/inducido químicamente , Prostaglandina-E Sintasas/antagonistas & inhibidores , Prostaglandina-E Sintasas/metabolismo , Relación Estructura-Actividad , Zimosan
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA