Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Methods ; 16(5): 387-395, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962624

RESUMEN

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen Individual de Molécula/métodos , Programas Informáticos , Algoritmos
2.
Nat Methods ; 16(6): 561, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31097821

RESUMEN

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

3.
Proc Natl Acad Sci U S A ; 116(8): 3211-3220, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718427

RESUMEN

Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Proteínas de Unión a las Penicilinas/genética , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/genética , División Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/ultraestructura , Citoesqueleto/genética , Citoesqueleto/ultraestructura , Escherichia coli/genética , GTP Fosfohidrolasas/genética , Humanos , Microscopía Fluorescente , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Infecciones Neumocócicas/genética , Streptococcus pneumoniae/patogenicidad , Streptococcus pneumoniae/ultraestructura
5.
6.
Proc Natl Acad Sci U S A ; 111(12): 4566-71, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616530

RESUMEN

We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.


Asunto(s)
Caulobacter crescentus/citología , Microscopía/métodos , Caulobacter crescentus/efectos de los fármacos , Caulobacter crescentus/genética , Ciclo Celular , Daño del ADN , ADN Bacteriano/efectos de los fármacos , ADN Bacteriano/genética , Mitomicina/farmacología
7.
Bioinformatics ; 31(5): 797-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25362091

RESUMEN

During the past decade, localization microscopy (LM) has transformed into an accessible, commercially available technique for life sciences. However, data processing can be challenging to the non-specialist and care is still needed to produce meaningful results. PALMsiever has been developed to provide a user-friendly means of visualizing, filtering and analyzing LM data. It includes drift correction, clustering, intelligent line profiles, many rendering algorithms and 3D data visualization. It incorporates the main analysis and data processing modalities used by experts in the field, as well as several new features we developed, and makes them broadly accessible. It can easily be extended via plugins and is provided as free of charge open-source software.


Asunto(s)
Algoritmos , Gráficos por Computador , Interpretación de Imagen Asistida por Computador/métodos , Microscopía/métodos , Microtúbulos/ultraestructura , Programas Informáticos , Análisis por Conglomerados , Humanos , Interfaz Usuario-Computador
8.
Nat Microbiol ; 9(4): 1064-1074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480901

RESUMEN

Bacterial cell division requires septal peptidoglycan (sPG) synthesis by the divisome complex. Treadmilling of the essential tubulin homologue FtsZ has been implicated in septal constriction, though its precise role remains unclear. Here we used live-cell single-molecule imaging of the divisome transpeptidase PBP2B to investigate sPG synthesis dynamics in Bacillus subtilis. In contrast to previous models, we observed a single population of processively moving PBP2B molecules whose motion is driven by peptidoglycan synthesis and is not associated with FtsZ treadmilling. However, despite the asynchronous motions of PBP2B and FtsZ, a partial dependence of PBP2B processivity on FtsZ treadmilling was observed. Additionally, through single-molecule counting experiments we provide evidence that the divisome synthesis complex is multimeric. Our results support a model for B. subtilis division where a multimeric synthesis complex follows a single track dependent on sPG synthesis whose activity and dynamics are asynchronous with FtsZ treadmilling.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Peptidoglicano , Proteínas del Citoesqueleto/genética , Pared Celular
9.
Nat Commun ; 15(1): 5411, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926336

RESUMEN

Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Pared Celular , Proteínas de Unión a las Penicilinas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Microscopía Fluorescente , Imagen Individual de Molécula , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/genética
10.
Biophys J ; 105(1): 172-81, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823236

RESUMEN

Nucleic acid synthesis is spatially organized in many organisms. In bacteria, however, the spatial distribution of transcription remains obscure, owing largely to the diffraction limit of conventional light microscopy (200-300 nm). Here, we use photoactivated localization microscopy to localize individual molecules of RNA polymerase (RNAP) in Escherichia coli with a spatial resolution of ∼40 nm. In cells growing rapidly in nutrient-rich media, we find that RNAP is organized in 2-8 bands. The band number scaled directly with cell size (and so with the chromosome number), and bands often contained clusters of >70 tightly packed RNAPs (possibly engaged on one long ribosomal RNA operon of 6000 bp) and clusters of such clusters (perhaps reflecting a structure like the eukaryotic nucleolus where many different ribosomal RNA operons are transcribed). In nutrient-poor media, RNAPs were located in only 1-2 bands; within these bands, a disproportionate number of RNAPs were found in clusters containing ∼20-50 RNAPs. Apart from their importance for bacterial transcription, our studies pave the way for molecular-level analysis of several cellular processes at the nanometer scale.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/citología , Microscopía , Imagen Molecular , Nanoestructuras/química , Operón/genética , Transporte de Proteínas , ARN Ribosómico/genética , Transcripción Genética
11.
Nat Methods ; 7(10): 831-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20818380

RESUMEN

The analysis of structure and dynamics of biomolecules is important for understanding their function. Toward this aim, we introduce a method called 'switchable FRET', which combines single-molecule fluorescence resonance energy transfer (FRET) with reversible photoswitching of fluorophores. Typically, single-molecule FRET is measured within a single donor-acceptor pair and reports on only one distance. Although multipair FRET approaches that monitor multiple distances have been developed, they are technically challenging and difficult to extend, mainly because of their reliance on spectrally distinct acceptors. In contrast, switchable FRET sequentially probes FRET between a single donor and spectrally identical photoswitchable acceptors, dramatically reducing the experimental and analytical complexity and enabling direct monitoring of multiple distances. Our experiments on DNA molecules, a protein-DNA complex and dynamic Holliday junctions demonstrate the potential of switchable FRET for studying dynamic, multicomponent biomolecules.


Asunto(s)
ADN/análisis , ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Biotinilación , Simulación por Computador , Microscopía Fluorescente , Modelos Químicos , Método de Montecarlo , Conformación de Ácido Nucleico
12.
Nat Protoc ; 17(3): 847-869, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35102310

RESUMEN

Light microscopy is indispensable for analysis of bacterial spatial organization, yet the sizes and shapes of bacterial cells pose unique challenges to imaging. Bacterial cells are not much larger than the diffraction limit of visible light, and many species have cylindrical shapes and so lie flat on microscope coverslips, yielding low-resolution images when observing their short axes. In this protocol, we describe a pair of recently developed methods named VerCINI (vertical cell imaging by nanostructured immobilization) and µVerCINI (microfluidic VerCINI) that greatly increase spatial resolution and image quality for microscopy of the short axes of bacteria. The concept behind both methods is that cells are imaged while confined vertically inside cell traps made from a nanofabricated mold. The mold is a patterned silicon wafer produced in a cleanroom facility using electron-beam lithography and deep reactive ion etching, which takes ~3 h for fabrication and ~12 h for surface passivation. After obtaining a mold, the entire process of making cell traps, imaging cells and processing images can take ~2-12 h, depending on the experiment. VerCINI and µVerCINI are ideal for imaging any process along the short axes of bacterial cells, as they provide high-resolution images without any special requirements for fluorophores or imaging modalities, and can readily be combined with other imaging methods (e.g., STORM). VerCINI can easily be incorporated into existing projects by researchers with expertise in bacteriology and microscopy. Nanofabrication can be either done in-house, requiring specialist facilities, or outsourced based on this protocol.


Asunto(s)
Microscopía , Nanoestructuras , Bacterias , Colorantes Fluorescentes , Microscopía/métodos , Silicio
13.
Commun Biol ; 5(1): 688, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810255

RESUMEN

This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research.


Asunto(s)
Aprendizaje Profundo , Antibacterianos/farmacología , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
14.
Biophys J ; 100(6): 1568-77, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21402040

RESUMEN

Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Análisis de Varianza , ADN/biosíntesis , ADN/metabolismo , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Escherichia coli/enzimología , Nucleótidos/química , Nucleótidos/metabolismo , Conformación Proteica , Factores de Tiempo
15.
Nat Commun ; 12(1): 2448, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907196

RESUMEN

Despite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , División Celular , Pared Celular/ultraestructura , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Expresión Génica , Hidrólisis , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Transporte de Proteínas
16.
Nat Commun ; 12(1): 2276, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859193

RESUMEN

Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Animales , Línea Celular Tumoral , Nube Computacional , Conjuntos de Datos como Asunto , Humanos , Cultivo Primario de Células , Ratas , Programas Informáticos
17.
Biophys J ; 99(9): 3102-11, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044609

RESUMEN

Single-molecule FRET (smFRET) has long been used as a molecular ruler for the study of biology on the nanoscale (∼2-10 nm); smFRET in total-internal reflection fluorescence (TIRF) Förster resonance energy transfer (TIRF-FRET) microscopy allows multiple biomolecules to be simultaneously studied with high temporal and spatial resolution. To operate at the limits of resolution of the technique, it is essential to investigate and rigorously quantify the major sources of noise and error; we used theoretical predictions, simulations, advanced image analysis, and detailed characterization of DNA standards to quantify the limits of TIRF-FRET resolution. We present a theoretical description of the major sources of noise, which was in excellent agreement with results for short-timescale smFRET measurements (<200 ms) on individual molecules (as opposed to measurements on an ensemble of single molecules). For longer timescales (>200 ms) on individual molecules, and for FRET distributions obtained from an ensemble of single molecules, we observed significant broadening beyond theoretical predictions; we investigated the causes of this broadening. For measurements on individual molecules, analysis of the experimental noise allows us to predict a maximum resolution of a FRET change of 0.08 with 20-ms temporal resolution, sufficient to directly resolve distance differences equivalent to one DNA basepair separation (0.34 nm). For measurements on ensembles of single molecules, we demonstrate resolution of distance differences of one basepair with 1000-ms temporal resolution, and differences of two basepairs with 80-ms temporal resolution. Our work paves the way for ultra-high-resolution TIRF-FRET studies on many biomolecules, including DNA processing machinery (DNA and RNA polymerases, helicases, etc.), the mechanisms of which are often characterized by distance changes on the scale of one DNA basepair.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Emparejamiento Base , Fenómenos Biofísicos , ADN/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia/normas , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Método de Montecarlo , Nanotecnología
18.
Nat Commun ; 11(1): 4149, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811832

RESUMEN

Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , División Celular/fisiología , Segregación Cromosómica/fisiología , Formas L/crecimiento & desarrollo , Dispositivos Laboratorio en un Chip/microbiología , Bacillus subtilis/citología , Bacillus subtilis/fisiología , Pared Celular/fisiología , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/fisiología , Formas L/citología , Formas L/fisiología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA