Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Toxics ; 11(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38133374

RESUMEN

The skin sensitization potential of agrochemicals can be assessed using laboratory methods such as the keratinocyte activation assay so that their use in regulatory toxicology might replace experimental animal testing. Here, we evaluated the skin sensitization potential of 11 agrochemicals by using an antioxidant response element-nuclear factor erythroid 2 luciferase assay in KeratinoSens and LuSens cells and applying a skin sensitization adverse outcome pathway (AOP). The KeratinoSens and LuSens assays consistently evaluated the skin sensitization potential of 10/11 agrochemicals with reference to animal testing databases. Benomyl, pretilachlor, fluazinam, terbufos, butachlor, and carbosulfan were correctly detected as sensitizers, and glufosinate ammonium, oxiadiazon, tebuconazole, and etofenprox were correctly detected as non-sensitizers. For diazinon, the skin sensitizing potential was positive in the KeratinoSens assay but not in the LuSens assay. These results suggest that the evaluation of in vitro skin sensitization using the AOP mechanism can be applied to assess active agrochemicals.

2.
Food Sci Biotechnol ; 31(6): 759-766, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35646417

RESUMEN

Sub-chronic toxicity studies using rats have been conducted for Cynanchum wilfordii (Maxim.) Hemsley (CW) and Cynanchum auriculatum Royle ex Wight (CA). CW water extract didn't show any adverse effects whereas administering CW powder decreased body weights in complication with decreased food consumptions. In the case of CA water extract, triglyceride and absolute/relative liver weights were elevated and vacuolation was observed in liver. Treated CA powder in male rats increased alanine aminotransferase and aspartate aminotransferase and induced single cell necrosis and multinucleated hepatocyte in liver. As for female rats, increased absolute/relative weights and hypertrophy/vacuolation in adrenal glands and vacuolation in ovaries were observed when administered CA powder. In conclusion, no observed adverse effect level (NOAEL) of CW water extract was over 5000 mg/kg/day, while NOAEL of CW powder was 700 mg/kg/day for female and 150 mg/kg/day for male. In case of CA, NOAEL of water extract was 1500 mg/kg/day for male and 2000 mg/kg/day for female, while NOAEL of powder was 150 mg/kg/day for both gender. To the best of our knowledge, this is the first sub-chronic toxicity study on the adverse effects, target organs and its dose levels of C. wilfordii (Maxim.) Hemsley and C. auriculatum Royle ex Wight following GLP protocols.

3.
Toxics ; 9(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33803047

RESUMEN

Graphene nanoplatelets (GNPs) are one of the major types of carbon based nanomaterials that have different industrial and biomedical applications. There is a risk of exposure to GNP material in individuals involved in their large-scale production and in individuals who use products containing GNPs. Determining the exact toxicity of GNP nanomaterials is a very important agenda. This research aimed to evaluate the skin sensitization potentials induced by GNPs using two types of alternative to animal testing. We analyzed the physicochemical characteristics of the test material by selecting a graphene nanomaterial with a nano-size on one side. Thereafter, we evaluated the skin sensitization effect using an in vitro and an in vivo alternative test method, respectively. As a result, we found that GNPs do not induce skin sensitization. In addition, it was observed that the administration of GNPs did not induce cytotoxicity and skin toxicity. This is the first report of skin sensitization as a result of GNPs obtained using alternative test methods. These results suggest that GNP materials do not cause skin sensitization, and these assays may be useful in evaluating the skin sensitization of some nanomaterials.

4.
Toxics ; 8(3)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784452

RESUMEN

The compound 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), a replacement for perfluorooctanesulfonate (PFOS) in the electroplating industry, has been widely detected in numerous environmental matrices, human sera, and organisms. Due to regulations that limit PFOS use, F-53B use is expected to increase. Therefore, in this study, we performed a subchronic oral toxicity study of F-53B in Sprague Dawley (SD) rats. F-53B was administered orally once daily to male and female rats for 28 days at doses of 5, 20, and 100 mg/kg/day. There were no toxicologically significant changes in F-53B-treated rats, except in the thyroid gland. However, F-53B slightly reduced the serum concentrations of thyroid hormones, including triiodothyronine and thyroxine, compared with their concentrations in the vehicle group. F-53B also induced follicular hyperplasia and was associated with increased thyroid hormone biosynthesis-associated protein expression. These results demonstrate that F-53B is a strong regulator of thyroid hormones in SD rats as it disrupts thyroid function. Thus, caution should be exercised in the industrial application of F-53B as an alternative for PFOS.

5.
Mol Med Rep ; 19(5): 3903-3911, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30896833

RESUMEN

Female sex steroid hormones, including estradiol (E2) and progesterone (P4), serve significant physiological roles in pregnancy. In particular, E2 and P4 influence placenta formation, maintain pregnancy and stimulate milk production. These hormones are produced by ovaries, adrenal glands and the placenta, of which the latter is a major endocrine organ during pregnancy. However, the mechanism of hormone production during pregnancy remains unclear. In the present study, the regulation of steroid hormones and steroidogenic enzymes was examined in human placenta according to gestational age. In human placental tissues, expression levels of steroidogenic enzymes were determined with reverse transcription­quantitative polymerase chain reaction and western blotting. The mRNA and protein expression of CYP17A1, HSD17B3 and CYP19A1, which are associated with the synthesis of dehydroepiandrosterone (DHEA) and E2, was elevated at different gestational ages in human placenta. In addition, to evaluate the correlation between serum and placental­produced hormones, steroid hormone levels, including pregnenolone (PG), DHEA, P4, testosterone (T) and E2, were examined in serum and placenta. Serum and placenta expression of DHEA and E2 increased with gestational age, whereas T and P4 were differently regulated in placenta and serum. To confirm the mechanism of steroidogenesis in vitro, placental BeWo cells were treated with E2 and P4, which are the most important hormones during pregnancy. The mRNA and protein expression of steroidogenic enzymes was significantly altered by E2 in vitro. These results demonstrated that concentration of steroid hormones was differently regulated by steroidogenic enzymes in the placenta depending on the type of the hormones, which may be critical to maintain pregnancy.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/metabolismo , Aromatasa/metabolismo , Edad Gestacional , Hormonas Esteroides Gonadales/metabolismo , Placenta/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , Aromatasa/genética , Femenino , Humanos , Embarazo
6.
Toxicol Res ; 33(1): 49-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28133513

RESUMEN

Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

7.
Int J Oncol ; 50(4): 1448-1454, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28259983

RESUMEN

Prolactin (PRL) is secreted from the pituitary gland in response to eating, mating, and ovulation. Increased serum concentration of PRL during pregnancy contributes to enlargement of the mammary glands of the breasts and prepares for production of milk. However, high PRL levels derived from prolactinoma and hyperprolactinemia induce physiological disorders such as infertility and early menopause. Natural compounds isolated from S. chinensis have been known to possess anti-oxidative, anti-inflammatory and anti-diabetic effects. In the present study, we examined the therapeutic effect of S. chinensis and its single compounds on hyperprolactinemia in the pituitary gland. In rat pituitary cells, PRL expression levels were examined using real-time PCR and western blot assay. Crude S. chinensis extract and its single compound, gomisin N, reduced mRNA and protein levels of PRL in GH3 cells. In addition, cell proliferation and PRL target gene expression in cells were modulated by S. chinensis. Similar to the in vitro experiments, crude S. chinensis extract and gomisin N reduced PRL levels in the pituitary and serum of immature female rats. These results show that S. chinensis and its single compound, gomisin N, are regulators of PRL production and may be candidates for treatment of hyperprolactinemia and prolactinoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Hiperprolactinemia/tratamiento farmacológico , Lignanos/uso terapéutico , Neoplasias Hipofisarias/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Compuestos Policíclicos/uso terapéutico , Prolactina/metabolismo , Prolactinoma/tratamiento farmacológico , Schisandra/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclooctanos/uso terapéutico , Femenino , Frutas/química , Expresión Génica/efectos de los fármacos , Humanos , Hipófisis/citología , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Prolactina/sangre , Prolactinoma/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Endocrinol ; 230(3): 339-46, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27507676

RESUMEN

Pregnenolone sulfate (PS) is a neuroactive steroid hormone produced in the brain. In this study, the effects of PS on synthesis and secretion of rat pituitary prolactin (PRL) were examined. To accomplish this, GH3 rat pituitary adenoma cells were treated with PS, which showed significantly increased mRNA and protein levels of PRL compared with the control. The mechanism of action responsible for the effects of PS on PRL synthesis and secretion was investigated by pretreating cells with inhibitors of traditional PRL- or the PS-related signaling pathway. PS-stimulated PRL transcription was significantly reduced by inhibitors of PKA, PKC and MAPK, but unchanged by GABAAR and NMDAR inhibitors. Western blotting analysis revealed that the total ERK1/2 level was upregulated in a time-dependent manner following PS treatment. An approximate 10% increase in GH3 cell proliferation was also observed in response to PS relative to the control. In the animal study, levels of PRL in the pituitary and in serum were elevated by PS. PS-stimulated PRL synthesis was also found to be associated with decreased expression of PRL target genes such as GNRH1, FSHB and LHB. These findings show that PS upregulates PRL synthesis and secretion in vivo and in vitro via MAPK signaling, suggesting that it has the potential for use as a therapeutic hormone to treat PRL-related disorders such as hypoprolactinemia and low milk supply.


Asunto(s)
Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Pregnenolona/farmacología , Prolactina/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Prolactina/sangre , Ratas , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
9.
J Biomed Res ; 30(3): 203-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27533930

RESUMEN

1,25-dihydroxyvitamin D3 (VD3), an active form of Vitamin D, is photosynthesized in the skin of vertebrates in response to solar ultraviolet B radiation (UV-B). VD3 deficiency can cause health problems such as immune disease, metabolic disease, and bone disorders. It has also been demonstrated that VD3 is involved in reproductive functions. Female sex hormones such as estrogen and progesterone are biosynthesized mainly in ovarian granulosa cells as the ovarian follicle develops. The functions of sex hormones include regulation of the estrus cycle and puberty as well as maintenance of pregnancy in females. In this study, we isolated granulosa cells from porcine ovaries and cultured them for experiments. To examine the effects of VD3 on ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by Real-time PCR and Western blotting assay. Production of progesterone from granulosa cells was also measured by ELISA assay. As a result, transcriptional and translational regulation of progesterone biosynthesis-related genes in granulosa cells was significantly altered by VD3. Furthermore, progesterone concentrations in porcine granulosa cell-cultured media decreased in response to VD3. These results show that VD3 was a strong regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

10.
Lab Anim Res ; 30(3): 123-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25324873

RESUMEN

Endocrine-disrupting chemicals (EDCs) are exogenous substances that alter the structure or function of the endocrine system. 4-Tert-octylphenol (OP) is one of the most representative EDCs and has estrogenic effects. In this study, we examined the effects of ethinyl estradiol (EE) and OP on the pituitary gland, placenta, and uterus of pregnant rats. Expression levels of human chorionic gonadotropin (hCG), oxytocin (OT), and contraction-associated proteins (CAPs) were determined, and uterine contractile activity was measured by uterine contraction assay. EE and OP both increased mRNA expression of OT and hCG in the pituitary gland but not the placenta. Since OT and hCG control uterine contraction, we next examined CAP expression in the uterus. Expression of 15-hydroxyprostaglandin-dehydrogenase (PGDH) was upregulated by OP, whereas expression of other CAPs was unaffected. To clarify the effect of OP on uterine contraction in pregnant rats, uterine contraction assay was performed. The 17ß-Estradiol (E2) did not affect contraction of primary uterine cells harvested from pregnant rats in a 3D collagen gel model. However, OP showed different effects from E2 by significantly reducing contraction activity. In summary, we demonstrated that OP interferes with regulation of OT and hCG in the pituitary gland as well as PGDH in the uterus, thereby reducing uterine contraction activity. This result differs from the action of endogenous E2. Collectively, these findings suggest that exposure to EDCs such as OP during pregnancycan reduce uterine contractile ability, which may result in contraction-associated adverse effects such as metratonia, bradytocia, and uterine leiomyomata.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA