Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 201001, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829063

RESUMEN

The near equality of the dark matter and baryon energy densities is a remarkable coincidence, especially when one realizes that the baryon mass is exponentially sensitive to UV parameters in the form of dimensional transmutation. We explore a new dynamical mechanism, where in the presence of an arbitrary number density of baryons and dark matter, a scalar adjusts the masses of dark matter and baryons until the two energy densities are comparable. In this manner, the coincidence is explained regardless of the microscopic identity of dark matter and how it was produced. This new scalar causes a variety of experimental effects such as a new force and a (dark) matter density-dependent proton mass.

2.
Phys Rev Lett ; 124(21): 211801, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530659

RESUMEN

In this Letter, we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decreasing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples. In the first example, we show how an axionlike particle can have its number abundance parametrically enhanced. In the second example, we demonstrate that the QCD axion can have its number abundance enhanced allowing for misalignment driven axion dark matter all the way down to f_{a} of order astrophysical bounds. In the third example, we show that the delayed oscillation of the scalar field can also sustain a period of inflation. In the last example, we present a situation where an oscillating scalar field is completely frictionless and does not dilute away in time.

3.
Phys Rev Lett ; 124(22): 221801, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567887

RESUMEN

The QCD axion provides an elegant solution to the strong CP problem. While the minimal realization is vulnerable to the so-called "axion quality problem," we will consider a more robust realization in the presence of a mirror sector related to the standard model by a (softly broken) Z_{2} symmetry. We point out that the resulting "heavy" axion, while satisfying all theoretical and observational constraints, has a large and uncharted parameter space, which allows it to be probed at the LHC as a long-lived particle (LLP). The small defining axionic coupling to gluons results in a challenging hadronic decay signal which we argue can be distinguished against the background in such a long-lived regime, and yet, the same coupling allows for sufficient production at the hadron colliders thanks to the large gluon-parton luminosity. Our study opens up a new window towards accelerator observable axions and, more generally, singly produced LLPs.

4.
Rep Prog Phys ; 82(11): 116201, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31185458

RESUMEN

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m. Neutral LLPs with lifetimes above [Formula: see text]100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.

5.
Phys Rev Lett ; 123(2): 021801, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386521

RESUMEN

Axionlike particles (ALPs) with couplings to electromagnetism have long been postulated as extensions to the standard model. String theory predicts an "axiverse" of many light axions, some of which may make up the dark matter in the Universe and/or solve the strong CP problem. We propose a new experiment using superconducting radio-frequency (SRF) cavities which is sensitive to light ALPs independent of their contribution to the cosmic dark matter density. Off-shell ALPs will source cubic nonlinearities in Maxwell's equations, such that if a SRF cavity is pumped at frequencies ω_{1} and ω_{2}, in the presence of ALPs there will be power in modes with frequencies 2ω_{1}±ω_{2}. Our setup is similar in spirit to light-shining-through-walls experiments, but because the pump field itself effectively converts the ALP back to photons inside a single cavity, our sensitivity scales differently with the strength of the external fields, allowing for superior reach as compared to experiments like OSQAR while utilizing current technology. Furthermore, a well-defined program of increasing sensitivity has a guaranteed physics result: the first observation of the Euler-Heisenberg term of low-energy QED at energies below the electron mass. We discuss how the ALP contribution may be separated from the QED contribution by a suitable choice of pump modes and cavity geometry, and conclude by describing the ultimate sensitivity of our proposed program of experiments to ALPs.

6.
Phys Rev Lett ; 120(26): 261802, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004764

RESUMEN

We present a new solution to the hierarchy problem utilizing nonlinearly realized discrete symmetries. The cancellations occur due to a discrete symmetry that is realized as a shift symmetry on the scalar and as an exchange symmetry on the particles with which the scalar interacts. We show how this mechanism can be used to solve the little hierarchy problem as well as give rise to light axions.

7.
Phys Rev Lett ; 121(24): 241102, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608750

RESUMEN

We show that axion dark matter may be detectable through narrow radio lines emitted from neutron stars. Neutron star magnetospheres host both a strong magnetic field and a plasma frequency that increases towards the neutron star surface. As the axions pass through the magnetosphere, they can resonantly convert into radio photons when the plasma frequency matches the axion mass. We solve the axion-photon mixing equations, including a full treatment of the magnetized plasma, to obtain the conversion probability. We discuss possible neutron star targets and how they may probe the QCD-axion parameter space in the mass range of ∼0.2-40 µeV.

8.
Phys Rev Lett ; 121(20): 201303, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500214

RESUMEN

Phase transitions in the early Universe can readily create an observable stochastic gravitational wave background. We show that such a background necessarily contains anisotropies analogous to those of the cosmic microwave background (CMB) of photons, and that these too may be within reach of proposed gravitational wave detectors. Correlations within the gravitational wave anisotropies and their cross-correlations with the CMB can provide new insights into the mechanism underlying primordial fluctuations, such as multifield inflation, as well as reveal the existence of nonstandard "hidden sectors" of particle physics in earlier eras.

9.
Phys Rev Lett ; 117(25): 251801, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28036199

RESUMEN

We present a new solution to the electroweak hierarchy problem. We introduce N copies of the standard model with varying values of the Higgs mass parameter. This generically yields a sector whose weak scale is parametrically removed from the cutoff by a factor of 1/sqrt[N]. Ensuring that reheating deposits a majority of the total energy density into this lightest sector requires a modification of the standard cosmological history, providing a powerful probe of the mechanism. Current and near-future experiments can explore much of the natural parameter space. Furthermore, supersymmetric completions that preserve grand unification predict superpartners with mass below m_{W}M_{pl}/M_{GUT}∼10 TeV.

10.
Phys Rev Lett ; 114(14): 141801, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910109

RESUMEN

We present a new mechanism for solving the strong CP problem using a Z_{2} discrete symmetry and an anomalous U(1) symmetry. A Z_{2} symmetry is used so that two gauge groups have the same theta angle. An anomalous U(1) symmetry makes the difference between the two theta angles physical and the sum unphysical. Two models are presented where the anomalous symmetry manifests itself in the IR in different ways. In the first model, there are massless bifundamental quarks, a solution reminiscent of the massless up quark solution. In the IR of this model, the η^{'} boson relaxes the QCD theta angle to the difference between the two theta angles-in this case zero. In the second model, the anomalous U(1) symmetry is realized in the IR as a dynamically generated mass term that has exactly the phase needed to cancel the theta angle. Both of these models make the extremely concrete prediction that there exist new colored particles at the TeV scale.

11.
Nat Commun ; 13(1): 1049, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217674

RESUMEN

Axions are hypothetical particles that may explain the observed dark matter density and the non-observation of a neutron electric dipole moment. An increasing number of axion laboratory searches are underway worldwide, but these efforts are made difficult by the fact that the axion mass is largely unconstrained. If the axion is generated after inflation there is a unique mass that gives rise to the observed dark matter abundance; due to nonlinearities and topological defects known as strings, computing this mass accurately has been a challenge for four decades. Recent works, making use of large static lattice simulations, have led to largely disparate predictions for the axion mass, spanning the range from 25 microelectronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refinement simulations are better suited for axion cosmology than the previously-used static lattice simulations because only the string cores require high spatial resolution. Using dedicated adaptive mesh refinement simulations we obtain an over three order of magnitude leap in dynamic range and provide evidence that axion strings radiate their energy with a scale-invariant spectrum, to within ~5% precision, leading to a mass prediction in the range (40,180) microelectronvolts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA