Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121828, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002464

RESUMEN

Control of algal blooms and associated biologically-induced water quality risks in drinking reservoirs is problematic. Copper sulphate (CuSO4) treatment is one intervention that has been utilised for >100 years. Evidence indicates a favourable short-term reduction in Cyanobacterial biomass (e.g. bloom termination), but here we indicate that it may also increase longer-term water quality risk. In 2022, we investigated the impacts of CuSO4 spraying on Cyanobacterial communities and nutrient levels within a drinking water supply reservoir using environmental DNA (eDNA) to assess community shifts, alongside monitoring nutrient fractions, orthophosphate (OP) and total phosphate (TP), post-treatment. CuSO4 application successfully reduced Cyanobacterial abundance, however elimination of Cyanobacteria resulted in a shift in bacterial dominance favouring Planctomycetota throughout the summer and a combination of Actinobacteriota and Verrucomicrobiota, throughout autumn. As Cyanobacterial abundance recovered post-treatment, Cyanobacterial genera demonstrated greater diversity compared to only three Cyanobacterial genera present across samples pre-treatment, and included taxa associated with water quality risk (e.g. taste and odour (T&O) metabolite and toxin producers). The increase in Cyanobacteria post-treatment was attributed to an increase in biologically available nutrients, primarily a significant increase in OP. Overall, findings suggest that the significant shift in biodiversity likely induces a less stable ecosystem with greater plasticity of response to changing environmental and biogeochemical variables. Legacy implications of CuSO4 spraying, in terms of shifts in ecosystem and nutrient balance over time, may have implications for drinking water quality, but importantly also for reservoir management options. As such, the effects of CuSO4 spraying should be considered carefully before consideration as a contender for in-reservoir biological control.


Asunto(s)
Sulfato de Cobre , Cianobacterias , Calidad del Agua , Cianobacterias/efectos de los fármacos , Eutrofización
2.
Water Res ; 232: 119693, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764104

RESUMEN

Geosmin synthase (geoA) and 2-MIB cyclase (mic) are key biosynthetic genes responsible for the production of taste and odour (T&O) compounds, geosmin and 2-MIB. These T&O compounds are becoming an increasing global problem for drinking water supplies. It is thought that geosmin and 2-MIB may be linked to, or exacerbated by, a variety of different environmental and nutrient triggers. However, to the best of our knowledge, no studies to date have evaluated the combined effects of seasonality, temperature, and nutrient concentrations on geoA and mic copy numbers in conjunction with T&O concentrations. In this study, environmental triggers behind geosmin and 2-MIB production were investigated in nine reservoirs across Wales, U.K. between July 2019 - August 2020. The abundance of geoA and mic were quantified through quantitative Polymerase Chain Reaction (qPCR). Temporal changes in geoA and geosmin concentrations revealed geoA to be an indicator of monthly geosmin concentrations, although only when geosmin concentrations exceeded 100 ng L-1. Model analysis of a reservoir with elevated geosmin concentrations revealed geoA to be significantly associated with mean temperature (p < 0.001) and the nutrients dissolved reactive silicate (p < 0.001), dissolved iron (p < 0.001), total inorganic nitrogen to phosphorous ratio (TIN:TP) (p < 0.001) and ammonium to nitrate ratio (NH4+:NO3-) (p < 0.001). Sulphate also demonstrated a significant positive linear relationship with geoA (p < 0.001). For mic analysis, NH4+:NO3- was significantly associated with mic (p < 0.05) and an association with dissolved reactive silicate was also observed (p = 0.084). Within this study we also report extreme variance in gene copy numbers between the study seasons. No consistent relationship could be determined for mic copy numbers mL-1 and 2-MIB (ng L-1). The findings from this study indicate that TIN:TP and NH4+:NO3- serve as good predictors for elevated geoA and mic, along with negative linear relationships observed for mean temperature and dissolved reactive silicate. Overall, our findings demonstrate the importance of nutrient concentrations, nutrient ratios and temperature for evidence based predictive capacity of taste and odour events in drinking water reservoirs.


Asunto(s)
Agua Potable , Gusto , Canfanos , Agua Potable/análisis , Naftoles/análisis , Nutrientes/análisis , Odorantes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA