Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734878

RESUMEN

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales , Ratones Noqueados , Neutrófilos , Animales , Neutrófilos/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Ratones , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Endogámicos C57BL , Trampas Extracelulares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/irrigación sanguínea
2.
J Biol Chem ; 299(4): 104593, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894017

RESUMEN

Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homolog RhoA, increase ∼10-fold in 5 to 8 h. We determined that the depletion of RhoB, but not of RhoA, the inhibition of actin contractility, and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact is essential to preserve monolayer integrity.


Asunto(s)
Actinas , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Células Endoteliales/metabolismo , Proteostasis , Proteína de Unión al GTP rhoA/metabolismo , Endotelio Vascular/metabolismo , Células Cultivadas
3.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892235

RESUMEN

Endothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction. Moreover, ECs show metabolic adaptions to physiological changes, such as metabolic shifts from quiescence to a proliferative state during angiogenesis. The AMP-activated protein kinase (AMPK) is at the center of these phenomena. AMPK has a central role as a metabolic sensor in several cell types. Moreover, in ECs, AMPK is mechanosensitive, linking mechanosensation with metabolic adaptions. Finally, recent studies indicate that AMPK dysregulation is at the center of cardiovascular disease (CVD) and that pharmacological targeting of AMPK is a promising and novel strategy to treat CVDs such as atherosclerosis or ischemic injury. In this review, we summarize the current knowledge relevant to this topic, with a focus on shear stress-induced AMPK modulation and its consequences for vascular health and disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedades Cardiovasculares , Células Endoteliales , Estrés Mecánico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Animales , Mecanotransducción Celular
4.
Am J Respir Crit Care Med ; 205(7): 806-818, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081007

RESUMEN

Rationale: von Willebrand factor (vWF) mediates platelet adhesion during thrombosis. While chronic thromboembolic pulmonary hypertension (CTEPH) is associated with increased plasma levels of vWF, the role of this protein in CTEPH has remained enigmatic. Objectives: To identify the role of vWF in CTEPH. Methods: CTEPH-specific patient plasma and pulmonary endarterectomy material from patients with CTEPH were used to study the relationship between inflammation, vWF expression, and pulmonary thrombosis. Cell culture findings were validated in human tissue, and proteomics and chromatin immunoprecipitation were used to investigate the underlying mechanism of CTEPH. Measurements and Main Results: vWF is increased in plasma and the pulmonary endothelium of CTEPH patients. In vitro, the increase in vWF gene expression and the higher release of vWF protein upon endothelial activation resulted in elevated platelet adhesion to CTEPH endothelium. Proteomic analysis revealed that nuclear factor (NF)-κB2 was significantly increased in CTEPH. We demonstrate reduced histone tri-methylation and increased histone acetylation of the vWF promoter in CTEPH endothelium, facilitating binding of NF-κB2 to the vWF promoter and driving vWF transcription. Genetic interference of NFκB2 normalized the high vWF RNA expression levels and reversed the prothrombotic phenotype observed in CTEPH-pulmonary artery endothelial cells. Conclusions: Epigenetic regulation of the vWF promoter contributes to the creation of a local environment that favors in situ thrombosis in the pulmonary arteries. It reveals a direct molecular link between inflammatory pathways and platelet adhesion in the pulmonary vascular wall, emphasizing a possible role of in situ thrombosis in the development or progression of CTEPH.


Asunto(s)
Hipertensión Pulmonar , Factor de von Willebrand , Células Endoteliales/metabolismo , Endotelio Vascular , Epigénesis Genética , Humanos , Agregación Plaquetaria , Proteómica , Factor de von Willebrand/análisis , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
5.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32198280

RESUMEN

Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes. We found that the inhibitor bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented lipopolysaccharide (LPS)-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, mitogen-activated protein 4 kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signaled via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Abl-related gene (Arg, also known as ABL2) by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation. We conclude that MAP4K4 is an important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Because it inhibits both Arg and MAP4K4, use of the clinically available drug bosutinib might form a viable strategy against vascular leakage syndromes.


Asunto(s)
Adhesiones Focales , Preparaciones Farmacéuticas , Uniones Adherentes , Compuestos de Anilina , Animales , Permeabilidad Capilar , Ratones , Nitrilos , Quinolinas
6.
Nat Rev Mol Cell Biol ; 11(5): 366-78, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20414258

RESUMEN

The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.


Asunto(s)
Movimiento Celular , Leucocitos/citología , Vénulas/citología , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Leucocitos/metabolismo , Pericitos/citología , Pericitos/metabolismo , Vénulas/metabolismo
7.
Angiogenesis ; 24(3): 677-693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33770321

RESUMEN

Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.


Asunto(s)
Matriz Extracelular/metabolismo , Uniones Comunicantes/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Proteínas Tirosina Quinasas/metabolismo , Alveolos Pulmonares/enzimología , Animales , Adhesión Celular/genética , Activación Enzimática , Matriz Extracelular/genética , Uniones Comunicantes/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Ratones , Ratones Noqueados , Proteínas Tirosina Quinasas/genética
8.
J Cell Sci ; 132(17)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488505

RESUMEN

Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.


Asunto(s)
Células Endoteliales/metabolismo , Inflamación/metabolismo , Ubiquitina/metabolismo , Endotelio Vascular/metabolismo , Humanos
9.
J Cell Sci ; 132(11)2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31076513

RESUMEN

Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-ß-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-ß-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.


Asunto(s)
Endosomas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Células HeLa , Humanos , Podosomas/fisiología , Nexinas de Clasificación/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proteínas de Unión al GTP rab4/metabolismo
10.
J Endovasc Ther ; 28(4): 604-613, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33902345

RESUMEN

INTRODUCTION: Abdominal aortic aneurysms (AAAs) are associated with overall high mortality in case of rupture. Since the pathophysiology is unclear, no adequate pharmacological therapy exists. Smooth muscle cells (SMCs) dysfunction and extracellular matrix (ECM) degradation have been proposed as underlying causes. We investigated SMC spatial organization and SMC-ECM interactions in our novel 3-dimensional (3D) vascular model. We validated our model for future use by comparing it to existing 2-dimensional (2D) cell culture. Our model can be used for translational studies of SMC and their role in AAA pathophysiology. MATERIALS AND METHODS: SMC isolated from the medial layer of were the aortic wall of controls and AAA patients seeded on electrospun poly-lactide-co-glycolide scaffolds and cultured for 5 weeks, after which endothelial cells (EC) are added. Cell morphology, orientation, mechanical properties and ECM production were quantified for validation and comparison between controls and patients. RESULTS: We show that cultured SMC proliferate into multiple layers after 5 weeks in culture and produce ECM proteins, mimicking their behavior in the medial aortic layer. EC attach to multilayered SMC, mimicking layer interactions. The novel SMC model exhibits viscoelastic properties comparable to biological vessels; cytoskeletal organization increases during the 5 weeks in culture; increased cytoskeletal alignment and decreased ECM production indicate different organization of AAA patients' cells compared with control. CONCLUSION: We present a valuable preclinical model of AAA constructed with patient specific cells with applications in both translational research and therapeutic developments. We observed SMC spatial reorganization in a time course of 5 weeks in our robust, patient-specific model of SMC-EC organization and ECM production.


Asunto(s)
Aneurisma de la Aorta Abdominal , Células Endoteliales , Matriz Extracelular , Humanos , Miocitos del Músculo Liso , Resultado del Tratamiento
11.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830380

RESUMEN

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Asunto(s)
Prenilación/efectos de los fármacos , Proteína de Unión al GTP rac1/química , Proteínas de Unión al GTP rho/química , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/química , Secuencia de Aminoácidos/genética , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Cinética , Electricidad Estática , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP rho/genética , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/genética
12.
Nephrol Dial Transplant ; 35(9): 1478-1487, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31071222

RESUMEN

Accumulating evidence indicates that the pathological changes of the endothelium may contribute to the development of cardiovascular complications in chronic kidney disease (CKD). Non-traditional risk factors related to CKD are associated with the incidence of cardiovascular disease, but their role in uraemic endothelial dysfunction has often been disregarded. In this context, soluble α-Klotho and vitamin D are of importance to maintain endothelial integrity, but their concentrations decline in CKD, thereby contributing to the dysfunction of the endothelial lining. These hormonal disturbances are accompanied by an increment of circulating fibroblast growth factor-23 and phosphate, both exacerbating endothelial toxicities. Furthermore, impaired renal function leads to an increment of inflammatory mediators, reactive oxygen species and uraemic toxins that further aggravate the endothelial abnormalities and in turn also inhibit the regeneration of disrupted endothelial lining. Here, we highlight the distinct endothelial alterations mediated by the abovementioned non-traditional risk factors as demonstrated in experimental studies and connect these to pathological changes in CKD patients, which are driven by endothelial disturbances, other than atherosclerosis. In addition, we describe therapeutic strategies that may promote restoration of endothelial abnormalities by modulating imbalanced mineral homoeostasis and attenuate the impact of uraemic retention molecules, inflammatory mediators and reactive oxygen species. A clinical perspective on endothelial dysfunction in CKD may translate into reduced structural and functional abnormalities of the vessel wall in CKD, and ultimately improved cardiovascular disease.


Asunto(s)
Endotelio Vascular/patología , Insuficiencia Renal Crónica/complicaciones , Enfermedades Vasculares/etiología , Animales , Humanos , Enfermedades Vasculares/patología
13.
Stroke ; 50(6): 1590-1594, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31136287

RESUMEN

Background and Purpose- We developed a rat model of silent brain infarcts based on microsphere infusion and investigated their impact on perfusion and tissue damage. Second, we studied the extent and mechanisms of perfusion recovery. Methods- At day 0, 15 µm fluorescent microspheres were injected into the right common carotid artery of F344 rats. At days 1, 7, or 28, the brain was removed, cut in 100-µm cryosections, and processed for immunofluorescent staining and analysis. Results- Injection of microspheres caused mild and transient damage to the treated hemisphere, with a decrease in perfused capillary volume at day 1, as compared with the untreated hemisphere. At day 1 but not at days 7 and 28, we observed IgG staining outside of the vessels, indicating vessel leakage. All microspheres were located inside the lumen of the vessels at day 1, whereas the vast majority (≈80%) of the microspheres were extravascular at day 7, and 100% at day 28. This was accompanied by restoration of perfused capillary volume. Conclusions- Microspheres cause mild and transient damage, and effective extravasation mechanisms exist in the brain to clear microsized emboli from the vessels.


Asunto(s)
Infarto Encefálico , Microesferas , Animales , Infarto Encefálico/inducido químicamente , Infarto Encefálico/metabolismo , Infarto Encefálico/patología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Endogámicas F344
14.
15.
Nephrol Dial Transplant ; 34(2): 252-264, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718431

RESUMEN

Background: Uraemia induces endothelial cell (EC) injury and impaired repair capacity, for which the underlying mechanism remains unclear. Active vitamin D (VD) may promote endothelial repair, however, the mechanism that mediates the effects of VD in chronic kidney disease are poorly understood. Thus, we investigated uraemia-induced endothelial damage and the protection against such damage by active VD. Methods: We applied electric cell-substrate impedance sensing (ECIS) to study real-time responses of human ECs exposed to pooled uraemic and non-uraemic plasma with or without the addition of active VD. The effects of indoxyl sulphate and p-cresol were tested in non-uraemic plasma. Structural changes for vascular endothelial (VE)-cadherin and F-actin were assessed by immunostaining and quantified. Results: The exposure of ECs to uraemic media significantly decreased endothelial barrier function after 24 h. Cell migration after electrical wounding and recovery of the barrier after thrombin-induced loss of integrity were significantly impaired in uraemic-medium stimulated cells and cells exposed to indoxyl sulphate and p-cresol. This effect on ECIS was dependent on loss of cell-cell interaction. Mechanistically, we found that EC, exposed to uraemic media, displayed disrupted VE-cadherin interactions and F-actin reorganization. VD supplementation rescued both endothelial barrier function and cell-cell interactions in ECs exposed to uraemic media. These events were associated with an increment of VE-cadherin at intercellular junctions. Conclusions: Our data demonstrate a potentially clinically relevant mechanism for uraemia-induced endothelial damage. Furthermore, active VD rescued the uraemic medium-induced loss of cell-cell adhesion, revealing a novel role of active VD in preservation of endothelial integrity during uraemia.


Asunto(s)
Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Uremia/metabolismo , Vitamina D/farmacología , Actinas/metabolismo , Adulto , Anciano , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Cresoles/farmacología , Endotelio Vascular/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Indicán/farmacología , Uniones Intercelulares/efectos de los fármacos , Masculino , Persona de Mediana Edad , Trombina/metabolismo , Uremia/tratamiento farmacológico , Adulto Joven
16.
J Immunol ; 198(12): 4823-4836, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28484055

RESUMEN

Inflammation is driven by excessive transmigration (diapedesis) of leukocytes from the blood to the tissue across the endothelial cell monolayer that lines blood vessels. Leukocyte adhesion, crawling, and transmigration are regulated by clustering of the endothelial mechanosensitive receptor intercellular adhesion molecule-1 (ICAM-1). Whereas several proteins are known to promote ICAM-1 function, the molecular mechanisms that limit ICAM-1-mediated adhesion to prevent excessive leukocyte transmigration remain unknown. We identify the endothelial actin-binding protein CD2-associated protein (CD2AP) as a novel interaction partner of ICAM-1. Loss of CD2AP stimulates the dynamics of ICAM-1 clustering, which facilitates the formation of ICAM-1 complexes on the endothelial cell surface. Consequently, neutrophil adhesion is increased, but crawling is decreased. In turn, this promotes the neutrophil preference for the transcellular over the paracellular transmigration route. Mechanistically, CD2AP is required for mechanosensitive ICAM-1 downstream signaling toward activation of the PI3K, and recruitment of F-actin and of the actin-branching protein cortactin. Moreover, CD2AP is necessary for ICAM-1-induced Rac1 recruitment and activation. Mechanical force applied on ICAM-1 impairs CD2AP binding to ICAM-1, suggesting that a tension-induced negative feedback loop promotes ICAM-1-mediated neutrophil crawling and paracellular transmigration. To our knowledge, these data show for the first time that the mechanoreceptor ICAM-1 is negatively regulated by an actin-binding adaptor protein, i.e., CD2AP, to allow a balanced and spatiotemporal control of its adhesive function. CD2AP is important in kidney dysfunction that is accompanied by inflammation. Our findings provide a mechanistic basis for the role of CD2AP in inflamed vessels, identifying this adaptor protein as a potential therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adhesión Celular , Proteínas del Citoesqueleto/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/fisiología , Neutrófilos/fisiología , Transducción de Señal , Migración Transendotelial y Transepitelial , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Movimiento Celular , Proteínas del Citoesqueleto/inmunología , Endotelio Vascular/química , Endotelio Vascular/metabolismo , Humanos , Técnicas In Vitro , Molécula 1 de Adhesión Intercelular/inmunología , Leucocitos/inmunología , Leucocitos/metabolismo , Neutrófilos/inmunología
17.
Crit Care ; 23(1): 117, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975180

RESUMEN

BACKGROUND: Endothelial hyperpermeability following cardiopulmonary bypass (CPB) contributes to microcirculatory perfusion disturbances and postoperative complications after cardiac surgery. We investigated the postoperative course of renal and pulmonary endothelial barrier function and the association with microcirculatory perfusion and angiopoietin-2 levels in patients after CPB. METHODS: Clinical data, sublingual microcirculatory data, and plasma samples were collected from patients undergoing coronary artery bypass graft surgery with CPB (n = 17) before and at several time points up to 72 h after CPB. Renal and pulmonary microvascular endothelial cells were incubated with patient plasma, and in vitro endothelial barrier function was assessed using electric cell-substrate impedance sensing. Plasma levels of angiopoietin-1,-2, and soluble Tie2 were measured, and the association with in vitro endothelial barrier function and in vivo microcirculatory perfusion was determined. RESULTS: A plasma-induced reduction of renal and pulmonary endothelial barrier function was observed in all samples taken within the first three postoperative days (P < 0.001 for all time points vs. pre-CPB). Angiopoietin-2 and soluble Tie2 levels increased within 72 h after CPB (5.7 ± 4.4 vs. 1.7 ± 0.4 ng/ml, P < 0.0001; 16.3 ± 4.7 vs. 11.9 ± 1.9 ng/ml, P = 0.018, vs. pre-CPB), whereas angiopoietin-1 remained stable. Interestingly, reduced in vitro renal and pulmonary endothelial barrier moderately correlated with reduced in vivo microcirculatory perfusion after CPB (r = 0.47, P = 0.005; r = 0.79, P < 0.001). In addition, increased angiopoietin-2 levels moderately correlated with reduced in vitro renal and pulmonary endothelial barrier (r = - 0.46, P < 0.001; r = - 0.40, P = 0.005) and reduced in vivo microcirculatory perfusion (r = - 0.43, P = 0.01; r = - 0.41, P = 0.03). CONCLUSIONS: CPB is associated with an impairment of in vitro endothelial barrier function that continues in the first postoperative days and correlates with reduced postoperative microcirculatory perfusion and increased circulating angiopoietin-2 levels. These results suggest that angiopoietin-2 is a biomarker for postoperative endothelial hyperpermeability, which may contribute to delayed recovery of microcirculatory perfusion after CPB. TRIAL REGISTRATION: NTR4212 .


Asunto(s)
Puente Cardiopulmonar/efectos adversos , Células Endoteliales/fisiología , Microcirculación/fisiología , Anciano , Angiopoyetina 1/análisis , Angiopoyetina 1/sangre , Angiopoyetina 2/análisis , Angiopoyetina 2/sangre , Biomarcadores/análisis , Biomarcadores/sangre , Puente Cardiopulmonar/métodos , Células Endoteliales/metabolismo , Femenino , Humanos , Riñón/irrigación sanguínea , Riñón/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Receptor TIE-2/análisis , Receptor TIE-2/sangre
18.
Blood ; 127(7): 898-907, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26647392

RESUMEN

Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense.


Asunto(s)
Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/biosíntesis , Lipopolisacáridos/toxicidad , Neutrófilos/metabolismo , Animales , Modelos Animales de Enfermedad , Endotoxemia/genética , Endotoxemia/patología , Molécula 1 de Adhesión Intercelular/genética , Ratones , Ratones Noqueados , Neutrófilos/patología , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Migración Transendotelial y Transepitelial/efectos de los fármacos , Migración Transendotelial y Transepitelial/genética
19.
Arterioscler Thromb Vasc Biol ; 37(9): 1618-1627, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28775074

RESUMEN

OBJECTIVE: Venous thromboembolism is a major contributor to global disease burden. Leukocytes and platelets initiate thrombogenesis on blood stasis and initiate the formation of a fibrin, VWF (von Willebrand factor), and neutrophil extracellular trap scaffold for erythrocytes. However, there is little knowledge on how erythrocytes become stably incorporated into this scaffold. Recently, we described the adhesion of calcium-loaded erythrocytes to endothelial-derived VWF strings. Because VWF is part of the scaffold of venous thrombi, we questioned whether reduced flow or stasis promotes the adhesion of normal erythrocytes to VWF and whether venous thrombi show evidence of erythrocyte-VWF interactions. APPROACH AND RESULTS: In the present work, we perfused, under controlled shear conditions, washed, normal erythrocytes over surface-immobilized plasma and extracellular matrix proteins and showed that normal erythrocytes specifically bind to VWF. The interaction between erythrocytes and VWF significantly increased when the wall shear stress was reduced. Next, we investigated whether erythrocyte-VWF interactions support the structure of venous thrombi. High-resolution immunofluorescence imaging of human venous thrombi showed a striking pattern between erythrocytes, VWF, and fibrin, which suggests that VWF plays a supporting role, linking erythrocytes to fibrin in the thrombus. CONCLUSIONS: Our data suggest that erythrocyte retention in venous thrombi is mediated by erythrocyte-VWF or erythrocyte-VWF-fibrin interactions. Targeting erythrocyte retention could be a new strategy in the treatment or prevention of venous thrombosis.


Asunto(s)
Adhesión Celular , Eritrocitos/metabolismo , Mecanotransducción Celular , Trombosis de la Vena/sangre , Factor de von Willebrand/metabolismo , Velocidad del Flujo Sanguíneo , Calcio/metabolismo , Fibrina/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo , Trombosis de la Vena/fisiopatología
20.
Nat Rev Mol Cell Biol ; 12(12): 771, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971042
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA