Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 25(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114657

RESUMEN

Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.


Asunto(s)
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Nucleosomas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Electricidad Estática , Termodinámica
2.
Angew Chem Int Ed Engl ; 57(17): 4571-4575, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29465771

RESUMEN

Chromatin function depends on a dense network of interactions between nucleosomes and a wide range of proteins. A detailed description of these protein-nucleosome interactions is required to reach a full molecular understanding of chromatin function in both genetics and epigenetics. Herein, we show that the structure, dynamics, and interactions of nucleosomes can be interrogated in a residue-specific manner by using state-of-the-art solid-state NMR spectroscopy. Using sedimented nucleosomes, high-resolution spectra were obtained for both flexible histone tails and the non-mobile histone core. Through co-sedimentation of a nucleosome-binding peptide, we demonstrate that protein-binding sites on the nucleosome surface can be determined. We believe that this approach holds great promise as it is generally applicable, extendable to include the structure and dynamics of the bound proteins, and scalable to interactions of proteins with higher-order chromatin structures, including isolated and cellular chromatin.


Asunto(s)
Cromatina/química , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/química , Sitios de Unión , Modelos Moleculares , Conformación de Ácido Nucleico
3.
Methods Mol Biol ; 2819: 357-379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028515

RESUMEN

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Asunto(s)
Cromatina , Histonas , Nucleosomas , Unión Proteica , Cromatina/metabolismo , Cromatina/genética , Nucleosomas/metabolismo , Histonas/metabolismo , ADN/metabolismo , ADN/química , ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Chaperonas de Histonas/metabolismo
4.
Sci Rep ; 11(1): 23013, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837025

RESUMEN

The nucleosome surface contains an area with negative electrostatic potential known as the acidic patch, which functions as a binding platform for various proteins to regulate chromatin biology. The dense clustering of acidic residues may impact their effective pKa and thus the electronegativity of the acidic patch, which in turn could influence nucleosome-protein interactions. We here set out to determine the pKa values of residues in and around the acidic patch in the free H2A-H2B dimer using NMR spectroscopy. We present a refined solution structure of the H2A-H2B dimer based on intermolecular distance restraints, displaying a well-defined histone-fold core. We show that the conserved histidines H2B H46 and H106 that line the acidic patch have pKa of 5.9 and 6.5, respectively, and that most acidic patch carboxyl groups have pKa values well below 5.0. For H2A D89 we find strong evidence for an elevated pKa of 5.3. Our data establish that the acidic patch is highly negatively charged at physiological pH, while protonation of H2B H106 and H2B H46 at slightly acidic pH will reduce electronegativity. These results will be valuable to understand the impact of pH changes on nucleosome-protein interactions in vitro, in silico or in vivo.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Histonas/química , Nucleosomas/química , Animales , Cromatina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Electricidad Estática
5.
Nat Commun ; 10(1): 1751, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988309

RESUMEN

Ubiquitination of chromatin by modification of histone H2A is a critical step in both regulation of DNA repair and regulation of cell fate. These very different outcomes depend on the selective modification of distinct lysine residues in H2A, each by a specific E3 ligase. While polycomb PRC1 complexes modify K119, resulting in gene silencing, the E3 ligase RNF168 modifies K13/15, which is a key event in the response to DNA double-strand breaks. The molecular origin of ubiquitination site specificity by these related E3 enzymes is one of the open questions in the field. Using a combination of NMR spectroscopy, crosslinking mass-spectrometry, mutagenesis and data-driven modelling, here we show that RNF168 binds the acidic patch on the nucleosome surface, directing the E2 to the target lysine. The structural model highlights the role of E3 and nucleosome in promoting ubiquitination and provides a basis for understanding and engineering of chromatin ubiquitination specificity.


Asunto(s)
Histonas/química , Ubiquitina-Proteína Ligasas/química , Diferenciación Celular , Reparación del ADN , Histonas/metabolismo , Humanos , Modelos Moleculares , Dominios Proteicos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
6.
Methods Mol Biol ; 1837: 177-197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109612

RESUMEN

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique that has seen increasing application in the study of biomolecular interactions thanks to its solution-based nature, its rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events. Here, we describe the use of MST in the study of chromatin interactions, with emphasis on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB; the sequential binding of core histone complexes to histone chaperone APLF; the impact of the nucleosomal context on the recognition of histone modifications; and the binding of a LANA-derived peptide to nucleosome core. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Análisis de Datos , Colorantes Fluorescentes/química , Histonas/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Coloración y Etiquetado
7.
Nat Commun ; 6: 10156, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26658454

RESUMEN

Despite the discovery of heterotrimeric αßγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.


Asunto(s)
Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales , Ardisia/química , Línea Celular Tumoral , Depsipéptidos/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Humanos , Melanoma/metabolismo , Ratones , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Isoformas de Proteínas , Transducción de Señal , Cola (estructura animal)/irrigación sanguínea , Vasoconstricción/efectos de los fármacos
8.
Chem Biol ; 21(7): 890-902, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036778

RESUMEN

In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be "frozen" pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors.


Asunto(s)
Ciclohexanos/metabolismo , Ciclohexanos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Pirazinas/metabolismo , Pirazinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclohexanos/química , Dimerización , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Modelos Moleculares , Permeabilidad , Conformación Proteica/efectos de los fármacos , Pirazinas/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA