Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2201907119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617435

RESUMEN

Signaling via the T cell receptor (TCR) is critical during the development, maintenance, and activation of T cells. Quantitative aspects of TCR signaling have an important role during positive and negative selection, lineage choice, and ability to respond to small amounts of antigen. By using a mutant mouse line expressing a hypomorphic allele of the CD3ζ chain, we show here that the strength of pre-TCR­mediated signaling during T cell development determines the diversity of the TCRß repertoire available for positive and negative selection, and hence of the final αßTCR repertoire. This finding uncovers an unexpected, pre-TCR signaling­dependent and repertoire­shaping role for ß-selection beyond selection of in-frame rearranged TCRß chains. Our data furthermore support a model of pre-TCR signaling in which the arrangement of this receptor in stable nanoclusters determines its quantitative signaling capacity.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T , Animales , Complejo CD3/genética , Diferenciación Celular , Ratones , Ratones Mutantes , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Linfocitos T/inmunología
2.
Mol Cancer ; 23(1): 142, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987766

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common cancer in women, with triple negative BC (TNBC) accounting for 20% of cases. While early detection and targeted therapies have improved overall life expectancy, TNBC remains resistant to current treatments. Although parity reduces the lifetime risk of developing BC, pregnancy increases the risk of developing TNBC for years after childbirth. Although numerous gene mutations have been associated with BC, no single gene alteration has been identified as a universal driver. RRAS2 is a RAS-related GTPase rarely found mutated in cancer. METHODS: Conditional knock-in mice were generated to overexpress wild type human RRAS2 in mammary epithelial cells. A human sample cohort was analyzed by RT-qPCR to measure RRAS2 transcriptional expression and to determine the frequency of both a single-nucleotide polymorphism (SNP rs8570) in the 3'UTR region of RRAS2 and of genomic DNA amplification in tumoral and non-tumoral human BC samples. RESULTS: Here we show that overexpression of wild-type RRAS2 in mice is sufficient to develop TNBC in 100% of females in a pregnancy-dependent manner. In human BC, wild-type RRAS2 is overexpressed in 68% of tumors across grade, location, and molecular type, surpassing the prevalence of any previously implicated alteration. Still, RRAS2 overexpression is notably higher and more frequent in TNBC and young parous patients. The increased prevalence of the alternate C allele at the SNP position in tumor samples, along with frequent RRAS2 gene amplification in both tumors and blood of BC patients, suggests a cause-and-effect relationship between RRAS2 overexpression and breast cancer. CONCLUSIONS: Higher than normal expression of RRAS2 not bearing activating mutations is a key driver in the majority of breast cancers, especially those of the triple-negative type and those linked to pregnancy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Animales , Humanos , Ratones , Embarazo , Oncogenes , Polimorfismo de Nucleótido Simple , Periodo Posparto/genética , Mutación , Regulación Neoplásica de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas ras/genética , Proteínas ras/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas de la Membrana , Proteínas de Unión al GTP Monoméricas
3.
Front Immunol ; 14: 1105237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936972

RESUMEN

Background: Children are less susceptible than adults to symptomatic COVID-19 infection, but very few studies addressed their underlying cause. Moreover, very few studies analyzed why children highly exposed to the virus remain uninfected. Methods: We analyzed the serum levels of ACE2, angiotensin II, anti-spike and anti-N antibodies, cytokine profiles, and virus neutralization in a cohort of children at high risk of viral exposure, cohabiting with infected close relatives during the lockdown in Spain. Results: We analyzed 40 children who were highly exposed to the virus since they lived with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected relatives during the lockdown for several months without taking preventive measures. Of those, 26 reported mild or very mild symptoms. The induced immune response to the virus was analyzed 3 months after the household infection. Surprisingly, only 15 children had IgG anti-S (IgG+) determined by a sensitive method indicative of a past infection. The rest, negative for IgG anti-N or S in various tests, could be further subdivided, according to IgM antibodies, into those having IgM anti-S and IgM anti-N (IgG-IgMhigh) and those having only IgM anti-N (IgG-IgMlow). Interestingly, those two subgroups of children with IgM antibodies have strikingly different patterns of cytokines. The IgMhigh group had significantly higher IFN-α2 and IFN-γ levels as well as IL-10 and GM-CSF than the IgMlow group. In contrast, the IgMlow group had low levels of ACE2 in the serum. Both groups have a weaker but significant capacity to neutralize the virus in the serum than the IgG+ group. Two children were negative in all immunological antibody tests. Conclusions: A significant proportion of children highly exposed to SARS-CoV-2 did not develop a classical adaptive immune response, defined by the production of IgG, despite being in close contact with infected relatives. A large proportion of those children show immunological signs compatible with innate immune responses (as secretion of natural antibodies and cytokines), and others displayed very low levels of the viral receptor ACE2 that may have protected them from the virus spreading in the body despite high and constant viral exposure.


Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Humanos , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Control de Enfermedades Transmisibles , COVID-19/inmunología , Citocinas , Inmunidad , Inmunoglobulina G , Inmunoglobulina M
4.
Front Immunol ; 14: 1157263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081876

RESUMEN

Introduction: The rapid development of vaccines to prevent COVID-19 has raised the need to compare the capacity of different vaccines in terms of developing a protective humoral response. Previous studies have shown inconsistent results in this area, highlighting the importance of further research to evaluate the efficacy of different vaccines. Methods: This study utilized a highly sensitive and reliable flow cytometry method to measure the titers of IgG1 isotype antibodies in the blood of healthy volunteers after receiving one or two doses of various vaccines administered in Spain. The method was also used to simultaneously measure the reactivity of antibodies to the S protein of the original Wuhan strain and variants B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.617.1 (Kappa). Results: Significant differences were observed in the titer of anti-S antibodies produced after a first dose of the vaccines ChAdOx1 nCov-19/AstraZeneca, mRNA-1273/Moderna, BNT162b2/Pfizer-BioNTech, and Ad26.COV.S/Janssen. Furthermore, a relative reduction in the reactivity of the sera with the Alpha, Delta, and Kappa variants, compared to the Wuhan strain, was observed after the second boosting immunization. Discussion: The findings of this study provide a comparison of different vaccines in terms of anti-S antibody generation and cast doubts on the convenience of repeated immunization with the same S protein sequence. The multiplexed capacity of the flow cytometry method utilized in this study allowed for a comprehensive evaluation of the efficacy of various vaccines in generating a protective humoral response. Future research could focus on the implications of these findings for the development of effective COVID-19 vaccination strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Anticuerpos
5.
Front Immunol ; 13: 809285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296086

RESUMEN

The emergence of COVID-19 has led to a worldwide challenge for the rapid development of vaccines. Several types of safe and effective vaccines have been available in a time frame never seen before. Now that several hundred million people have been vaccinated there is an opportunity to compare vaccines in terms of protection and immune response. Here, we have applied a highly sensitive multiplexed flow cytometry method to measure simultaneously IgM, IgG1 and IgA anti-spike protein antibodies generated in response to three vaccines: ChAdOx1 (Oxford-AstraZeneca), mRNA-1273 (Moderna), and BNT162b2 (Pfizer-BioNTech). We have found that mRNA vaccines (mRNA-1273 and BNT162b2) induce a stronger humoral response, both after the first and the second dose, than the adenovirus-based ChAdOx1 vaccine. We also found that, in the elderly, antibody titers negatively correlate with the age of the donor but, also, that antibody titers remain stable for at least 6 months after complete vaccination. Finally, we found that one dose of BNT162b2 is sufficient to induce the highest antibody titers in seropositive pre-vaccination donors. We hope these data will help to guide future decisions on vaccination strategies.


Asunto(s)
COVID-19 , Vacunas , Anciano , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Lactante , SARS-CoV-2
6.
Front Immunol ; 13: 836516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401548

RESUMEN

Background: COVID-19 can generate a broad spectrum of severity and symptoms. Many studies analysed the determinants of severity but not among some types of symptoms. More importantly, very few studies analysed patients highly exposed to the virus that nonetheless remain uninfected. Methods: We analysed serum levels of ACE2, Angiotensin II and anti-Spike antibodies in 2 different cohorts at high risk of viral exposure, highly exposed but uninfected subjects, either high risk health care workers or persons cohabiting with infected close relatives and seropositive patients with symptoms. We tested the ability of the sera of these subjects to neutralize lentivirus pseudotyped with the Spike-protein. Results: We found that the serum levels of ACE2 are significantly higher in highly exposed but uninfected subjects. Moreover, sera from this seronegative persons can neutralize SARS-CoV-2 infection in cellular assays more strongly that sera from non-exposed negative controls eventhough they do not have anti-CoV-2 IgG antibodies suggesting that high levels of ACE2 in serum may somewhat protect against an active infection without generating a conventional antibody response. Finally, we show that among patients with symptoms, ACE2 levels were significantly higher in infected patients who developed cutaneous as compared with respiratory symptoms and ACE2 was also higher in those with milder symptoms. Conclusions: These findings suggest that soluble ACE2 could be used as a potential biomarker to predict SARS-CoV-2 infection risk and to discriminate COVID-19 disease subtypes.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
7.
Sci Rep ; 11(1): 10716, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021205

RESUMEN

SARS-CoV-2 is the virus that causes the disease called COVID-19, which has caused the worst pandemic of the century. Both, to know the immunological status of general population and to evaluate the efficacy of the vaccination process that is taking place around the world, serological tests represent a key tool. Classic serological tests, based on colorimetric techniques, such as ELISA or CLIA, continue to be the most widely used option. However, a real improvement in results is still needed. We developed a highly sensitive and specific FCM assay that allows the detection of IgG and IgA antibodies, directed against the native and functional S-protein of SARS-CoV-2 exposed on the membrane of a transfected cell line, up to 8 months after infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Citometría de Flujo , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Femenino , Humanos , Células Jurkat , Masculino , Persona de Mediana Edad
8.
EMBO Mol Med ; 13(3): e13549, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33471406

RESUMEN

A correct identification of seropositive individuals for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is of paramount relevance to assess the degree of protection of a human population to present and future outbreaks of the COVID-19 pandemic. We describe here a sensitive and quantitative flow cytometry method using the cytometer-friendly non-adherent Jurkat T-cell line that stably expresses the full-length native spike "S" protein of SARS-CoV-2 and a truncated form of the human EGFR that serves a normalizing role. S protein and huEGFRt coding sequences are separated by a T2A self-cleaving sequence, allowing to accurately quantify the presence of anti-S immunoglobulins by calculating a score based on the ratio of fluorescence intensities obtained by double-staining with the test sera and anti-EGFR. The method allows to detect immune individuals regardless of the result of other serological tests or even repeated PCR monitoring. As examples of its use, we show that as much as 28% of the personnel working at the CBMSO in Madrid is already immune. Additionally, we show that anti-S antibodies with protective neutralizing activity are long-lasting and can be detected in sera 8 months after infection.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , Citometría de Flujo/métodos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , COVID-19/virología , Prueba Serológica para COVID-19/estadística & datos numéricos , Ensayo de Inmunoadsorción Enzimática , Receptores ErbB/genética , Femenino , Citometría de Flujo/estadística & datos numéricos , Células Hep G2 , Humanos , Células Jurkat , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA