Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37144710

RESUMEN

We study the response of chemical reaction networks driven far from equilibrium to logarithmic perturbations of reaction rates. The response of the mean number of a chemical species is observed to be quantitively limited by number fluctuations and the maximum thermodynamic driving force. We prove these trade-offs for linear chemical reaction networks and a class of nonlinear chemical reaction networks with a single chemical species. Numerical results for several model systems support the conclusion that these trade-offs continue to hold for a broad class of chemical reaction networks, though their precise form appears to sensitively depend on the deficiency of the network.

2.
Proc Natl Acad Sci U S A ; 114(29): 7565-7570, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28674005

RESUMEN

A chemical mixture that continually absorbs work from its environment may exhibit steady-state chemical concentrations that deviate from their equilibrium values. Such behavior is particularly interesting in a scenario where the environmental work sources are relatively difficult to access, so that only the proper orchestration of many distinct catalytic actors can power the dissipative flux required to maintain a stable, far-from-equilibrium steady state. In this article, we study the dynamics of an in silico chemical network with random connectivity in an environment that makes strong thermodynamic forcing available only to rare combinations of chemical concentrations. We find that the long-time dynamics of such systems are biased toward states that exhibit a fine-tuned extremization of environmental forcing.

3.
Phys Rev Lett ; 120(18): 180605, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775356

RESUMEN

For two canonical examples of driven mesoscopic systems-a harmonically trapped Brownian particle and a quantum dot-we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

4.
Phys Biol ; 14(3): 03LT01, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28535148

RESUMEN

The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that drive phenotypic variation in a population of genetically identical cells. Characterizing the fluctuations that give rise to such rare events motivates the analysis of large deviations in stochastic models of gene expression. Recent developments in non-equilibrium statistical mechanics have led to a framework for analyzing Markovian processes conditioned on rare events and for representing such processes by conditioning-free driven Markovian processes. We use this framework, in combination with approaches based on queueing theory, to analyze a general class of stochastic models of gene expression. Modeling gene expression as a Batch Markovian Arrival Process (BMAP), we derive exact analytical results quantifying large deviations of time-integrated random variables such as promoter activity fluctuations. We find that the conditioning-free driven process can also be represented by a BMAP that has the same form as the original process, but with renormalized parameters. The results obtained can be used to quantify the likelihood of large deviations, to characterize system fluctuations conditional on rare events and to identify combinations of model parameters that can give rise to dynamical phase transitions in system dynamics.


Asunto(s)
Regulación de la Expresión Génica , Expresión Génica , Modelos Genéticos , Regiones Promotoras Genéticas , Cadenas de Markov , Mecánica , Probabilidad
5.
Phys Rev Lett ; 119(17): 170601, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219443

RESUMEN

Current is a characteristic feature of nonequilibrium systems. In stochastic systems, these currents exhibit fluctuations constrained by the rate of dissipation in accordance with the recently discovered thermodynamic uncertainty relation. Here, we derive a conjugate uncertainty relationship for the first passage time to accumulate a fixed net current. More generally, we use the tools of large-deviation theory to simply connect current fluctuations and first passage time fluctuations in the limit of long times and large currents. With this connection, previously discovered symmetries and bounds on the large-deviation function for currents are readily transferred to first passage times.

6.
Phys Rev Lett ; 116(12): 120601, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27058064

RESUMEN

Near equilibrium, small current fluctuations are described by a Gaussian distribution with a linear-response variance regulated by the dissipation. Here, we demonstrate that dissipation still plays a dominant role in structuring large fluctuations arbitrarily far from equilibrium. In particular, we prove a linear-response-like bound on the large deviation function for currents in Markov jump processes. We find that nonequilibrium current fluctuations are always more likely than what is expected from a linear-response analysis. As a small-fluctuations corollary, we derive a recently conjectured uncertainty bound on the variance of current fluctuations.

7.
Phys Rev Lett ; 115(13): 130501, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451540

RESUMEN

We determine the minimum energy required to control the evolution of any mesoscopic quantum system in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic equivalent of the fundamental cost of refrigeration, sets the minimum power consumption of mesoscopic devices that operate out of equilibrium, and allows one to calculate the efficiency of any control protocol, whether it be open-loop or feedback control. As examples, we calculate the energy cost of maintaining a qubit in the ground state and the efficiency of resolved-sideband cooling of nano-mechanical resonators, and discuss the energy cost of quantum information processing.

8.
PLoS Comput Biol ; 10(12): e1003974, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25503948

RESUMEN

Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli's chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response.


Asunto(s)
Adaptación Fisiológica/fisiología , Quimiotaxis/fisiología , Modelos Biológicos , Biología Computacional , Escherichia coli/fisiología , Termodinámica
9.
J Chem Phys ; 143(4): 044111, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26233111

RESUMEN

The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

10.
Phys Rev Lett ; 111(1): 010602, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23862988

RESUMEN

To induce transport, detailed balance must be broken. A common mechanism is to bias the dynamics with a thermodynamic fuel, such as chemical energy. An intriguing, alternative strategy is for a Maxwell demon to effect the bias using feedback. We demonstrate that these two different mechanisms lead to distinct thermodynamics by contrasting a chemical motor and information motor with identical dynamics. To clarify this difference, we study both models within one unified framework, highlighting the role of the interaction between the demon and the motor. This analysis elucidates the manner in which information is incorporated into a physical system.

11.
Nat Commun ; 14(1): 1280, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890153

RESUMEN

Living things benefit from exquisite molecular sensitivity in many of their key processes, including DNA replication, transcription and translation, chemical sensing, and morphogenesis. At thermodynamic equilibrium, the basic biophysical mechanism for sensitivity is cooperative binding, for which it can be shown that the Hill coefficient, a sensitivity measure, cannot exceed the number of binding sites. Generalizing this fact, we find that for any kinetic scheme, at or away from thermodynamic equilibrium, a very simple structural quantity, the size of the support of a perturbation, always limits the effective Hill coefficient. We show how this bound sheds light on and unifies diverse sensitivity mechanisms, including kinetic proofreading and a nonequilibrium Monod-Wyman-Changeux (MWC) model proposed for the E. coli flagellar motor switch, representing in each case a simple, precise bridge between experimental observations and the models we write down. In pursuit of mechanisms that saturate the support bound, we find a nonequilibrium binding mechanism, nested hysteresis, with sensitivity exponential in the number of binding sites, with implications for our understanding of models of gene regulation and the function of biomolecular condensates.


Asunto(s)
Escherichia coli , Escherichia coli/genética , Sitios de Unión , Termodinámica , Cinética , Regulación Alostérica
12.
Phys Rev E ; 108(4-1): 044113, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978593

RESUMEN

The limits on a system's response to external perturbations inform our understanding of how physical properties can be shaped by microscopic characteristics. Here, we derive constraints on the steady-state nonequilibrium response of physical observables in terms of the topology of the microscopic state space and the strength of thermodynamic driving. Notably, evaluation of these limits requires no kinetic information beyond the state-space structure. When applied to models of receptor binding, we find that sensitivity is bounded by the steepness of a Hill function with a Hill coefficient enhanced by the chemical driving beyond the structural equilibrium limit.

13.
Phys Rev E ; 105(1): L012102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193184

RESUMEN

We analyze the static response to perturbations of nonequilibrium steady states that can be modeled as one-dimensional diffusions on the circle. We demonstrate that an arbitrary perturbation can be broken up into a combination of three specific classes of perturbations that can be fruitfully addressed individually. For each class, we derive a simple formula that quantitatively characterizes the response in terms of the strength of nonequilibrium driving valid arbitrarily far from equilibrium.

14.
Phys Rev E ; 99(4-1): 042134, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108639

RESUMEN

Directed percolation (DP) is a classic model for nonequilibrium phase transitions into a single absorbing state (fixation). It has been extensively studied by analytical and numerical techniques in diverse contexts. Recently, DP has appeared as a generic model for the evolutionary and ecological dynamics of competing bacterial populations. Range expansion-the stochastic reproduction of bacteria competing for space to be occupied by their progeny-leads to a fluctuating and rough growth front, which is known from experiment and simulation to affect the underlying critical behavior of the DP transition. In this work, we employ symmetry arguments to construct a pair of nonlinear stochastic partial differential equations describing the coevolution of surface roughness with the composition field of DP. Macroscopic manifestations (phenomenology) of these equations on growth patterns and genealogical tracks of range expansion are discussed; followed by a renormalization group analysis of possible scaling behaviors at the DP transition.

15.
J R Soc Interface ; 16(154): 20190098, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31039695

RESUMEN

Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.


Asunto(s)
Relojes Biológicos , Entropía , Modelos Biológicos , Incertidumbre
16.
Nat Commun ; 10(1): 1666, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971687

RESUMEN

Systems coupled to multiple thermodynamic reservoirs can exhibit nonequilibrium dynamics, breaking detailed balance to generate currents. To power these currents, the entropy of the reservoirs increases. The rate of entropy production, or dissipation, is a measure of the statistical irreversibility of the nonequilibrium process. By measuring this irreversibility in several biological systems, recent experiments have detected that particular systems are not in equilibrium. Here we discuss three strategies to replace binary classification (equilibrium versus nonequilibrium) with a quantification of the entropy production rate. To illustrate, we generate time-series data for the evolution of an analytically tractable bead-spring model. Probability currents can be inferred and utilized to indirectly quantify the entropy production rate, but this approach requires prohibitive amounts of data in high-dimensional systems. This curse of dimensionality can be partially mitigated by using the thermodynamic uncertainty relation to bound the entropy production rate using statistical fluctuations in the probability currents.

17.
Nat Commun ; 10(1): 3542, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387988

RESUMEN

Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless, detecting broken time-reversal symmetry, which is the hallmark of dissipative processes, remains a challenge in the absence of observable directed motion, flows, or fluxes. Furthermore, quantifying the entropy production in a complex system requires detailed information about its dynamics and internal degrees of freedom. Here we introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. We apply our technique to two different physical systems, namely, a partially hidden network and a molecular motor. Our method does not require complete information about the system dynamics and thus provides a new tool for studying nonequilibrium phenomena.


Asunto(s)
Entropía , Modelos Biológicos , Adenosina Trifosfato/metabolismo , Simulación por Computador , Hidrólisis , Factores de Tiempo
18.
Phys Rev E ; 96(2-1): 020103, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950543

RESUMEN

The thermodynamic uncertainty relation offers a universal energetic constraint on the relative magnitude of current fluctuations in nonequilibrium steady states. However, it has only been derived for long observation times. Here, we prove a recently conjectured finite-time thermodynamic uncertainty relation for steady-state current fluctuations. Our proof is based on a quadratic bound to the large deviation rate function for currents in the limit of a large ensemble of many copies.

19.
Phys Rev E ; 95(4-1): 042102, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505816

RESUMEN

In the absence of external driving, a system exposed to thermal fluctuations will relax to equilibrium. However, the constant input of work makes it possible to counteract this relaxation and maintain the system in a nonequilibrium steady state. In this article, we use the stochastic thermodynamics of Markov jump processes to compute the minimum rate at which energy must be supplied and dissipated to maintain an arbitrary nonequilibrium distribution in a given energy landscape. This lower bound depends on two factors: the undriven probability current in the equilibrium state and the distance from thermal equilibrium of the target distribution. By showing the consequences of this result in a few simple examples, we suggest general implications for the required energetic costs of macromolecular repair and cytosolic protein localization.

20.
Phys Rev E ; 94(2-1): 020102, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627226

RESUMEN

We develop a consistent stochastic thermodynamics for environments composed of thermodynamic reservoirs in an external conservative force field, that is, environments described by the generalized or Gibbs canonical ensemble. We demonstrate that small systems weakly coupled to such reservoirs exchange both heat and work by verifying a local detailed balance relation for the induced stochastic dynamics. Based on this analysis, we help to rationalize the observation that nonthermal reservoirs can increase the efficiency of thermodynamic heat engines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA