Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Bioinformatics ; 30(16): 2384-5, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24771560

RESUMEN

UNLABELLED: WebProtégé is an open-source Web application for editing OWL 2 ontologies. It contains several features to aid collaboration, including support for the discussion of issues, change notification and revision-based change tracking. WebProtégé also features a simple user interface, which is geared towards editing the kinds of class descriptions and annotations that are prevalent throughout biomedical ontologies. Moreover, it is possible to configure the user interface using views that are optimized for editing Open Biomedical Ontology (OBO) class descriptions and metadata. Some of these views are shown in the Supplementary Material and can be seen in WebProtégé itself by configuring the project as an OBO project. AVAILABILITY AND IMPLEMENTATION: WebProtégé is freely available for use on the Web at http://webprotege.stanford.edu. It is implemented in Java and JavaScript using the OWL API and the Google Web Toolkit. All major browsers are supported. For users who do not wish to host their ontologies on the Stanford servers, WebProtégé is available as a Web app that can be run locally using a Servlet container such as Tomcat. Binaries, source code and documentation are available under an open-source license at http://protegewiki.stanford.edu/wiki/WebProtege.


Asunto(s)
Ontologías Biológicas , Programas Informáticos , Conducta Cooperativa , Internet
2.
BMC Bioinformatics ; 13 Suppl 1: S5, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22373396

RESUMEN

BACKGROUND: Ontologies are being developed for the life sciences to standardise the way we describe and interpret the wealth of data currently being generated. As more ontology based applications begin to emerge, tools are required that enable domain experts to contribute their knowledge to the growing pool of ontologies. There are many barriers that prevent domain experts engaging in the ontology development process and novel tools are needed to break down these barriers to engage a wider community of scientists. RESULTS: We present Populous, a tool for gathering content with which to construct an ontology. Domain experts need to add content, that is often repetitive in its form, but without having to tackle the underlying ontological representation. Populous presents users with a table based form in which columns are constrained to take values from particular ontologies. Populated tables are mapped to patterns that can then be used to automatically generate the ontology's content. These forms can be exported as spreadsheets, providing an interface that is much more familiar to many biologists. CONCLUSIONS: Populous's contribution is in the knowledge gathering stage of ontology development; it separates knowledge gathering from the conceptualisation and axiomatisation, as well as separating the user from the standard ontology authoring environments. Populous is by no means a replacement for standard ontology editing tools, but instead provides a useful platform for engaging a wider community of scientists in the mass production of ontology content.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Bases de Datos Factuales , Semántica , Programas Informáticos , Interfaz Usuario-Computador
3.
Bioinformatics ; 27(14): 2021-2, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21622664

RESUMEN

MOTIVATION: In the Life Sciences, guidelines, checklists and ontologies describing what metadata is required for the interpretation and reuse of experimental data are emerging. Data producers, however, may have little experience in the use of such standards and require tools to support this form of data annotation. RESULTS: RightField is an open source application that provides a mechanism for embedding ontology annotation support for Life Science data in Excel spreadsheets. Individual cells, columns or rows can be restricted to particular ranges of allowed classes or instances from chosen ontologies. The RightField-enabled spreadsheet presents selected ontology terms to the users as a simple drop-down list, enabling scientists to consistently annotate their data. The result is 'semantic annotation by stealth', with an annotation process that is less error-prone, more efficient, and more consistent with community standards. AVAILABILITY AND IMPLEMENTATION: RightField is open source under a BSD license and freely available from http://www.rightfield.org.uk


Asunto(s)
Gestión de la Información/métodos , Programas Informáticos , Indización y Redacción de Resúmenes , Clasificación/métodos , Interfaz Usuario-Computador
4.
AMIA Annu Symp Proc ; 2014: 671-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25954373

RESUMEN

The World Health Organisation is using OWL as a key technology to develop ICD-11 - the next version of the well-known International Classification of Diseases. Besides providing better opportunities for data integration and linkages to other well-known ontologies such as SNOMED-CT, one of the main promises of using OWL is that it will enable various forms of automated error checking. In this paper we investigate how automated OWL reasoning, along with a Justification Finding Service can be used as a Quality Assurance technique for the development of large and complex ontologies such as ICD-11. Using the International Classification of Traditional Medicine (ICTM) - Chapter 24 of ICD-11 - as a case study, and an expert panel of knowledge engineers, we reveal the kinds of problems that can occur, how they can be detected, and how they can be fixed. Specifically, we found that a logically inconsistent version of the ICTM ontology could be repaired using justifications (minimal entailing subsets of an ontology). Although over 600 justifications for the inconsistency were initially computed, we found that there were three main manageable patterns or categories of justifications involving TBox and ABox axioms. These categories represented meaningful domain errors to an expert panel of ICTM project knowledge engineers, who were able to use them to successfully determine the axioms that needed to be revised in order to fix the problem. All members of the expert panel agreed that the approach was useful for debugging and ensuring the quality of ICTM.


Asunto(s)
Clasificación Internacional de Enfermedades , Garantía de la Calidad de Atención de Salud , Vocabulario Controlado , Lenguajes de Programación
5.
AMIA Annu Symp Proc ; 2012: 643-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23304337

RESUMEN

Ontology design patterns (ODPs) are a proposed solution to facilitate ontology development, and to help users avoid some of the most frequent modeling mistakes. ODPs originate from similar approaches in software engineering, where software design patterns have become a critical aspect of software development. There is little empirical evidence for ODP prevalence or effectiveness thus far. In this work, we determine the use and applicability of ODPs in a case study of biomedical ontologies. We encoded ontology design patterns from two ODP catalogs. We then searched for these patterns in a set of eight ontologies. We found five patterns of the 69 patterns. Two of the eight ontologies contained these patterns. While ontology design patterns provide a vehicle for capturing formally reoccurring models and best practices in ontology design, we show that today their use in a case study of widely used biomedical ontologies is limited.


Asunto(s)
Programas Informáticos , Vocabulario Controlado , Informática Médica , Modelos Teóricos , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA