Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(1): 187-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38233148

RESUMEN

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c. 1699T > C missense mutation, which is thought to induce dysfunction through an unidentified mechanism. A study on SLC6A8-expressing oocytes showed that the c.1699T > C mutation decreased creatine uptake compared to that in wild-type (WT) oocytes. In addition, a kinetics study of creatine uptake revealed that the c.1699T > C mutation reduced the maximum uptake rate but not Michaelis-Menten constant. In contrast, the c.1699T > C mutation did not attenuate SLC6A8 protein levels or alter its cellular localization. Based on the SLC6A8 structure in the AlphaFold protein structure database, it is possible that the c.1699T > C mutation alters the interaction between the S567 and Y143 residues of SLC6A8, leading to decreased creatine transport function. These findings contribute to the understanding of the pathology of CCDS and to the development of strategies for CCDS treatment.


Asunto(s)
Creatina , Mutación Missense , Humanos , Creatina/metabolismo , Mutación , Transporte Biológico , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240348

RESUMEN

Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood-retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina. Our microdialysis study showed that the elimination rate constant during the terminal phase was significantly greater (1.90-fold) than that of [14C]D-mannitol, which is a bulk flow marker. The difference in the apparent elimination rate constants of [3H]putrescine and [14C]D-mannitol was significantly decreased by unlabeled putrescine and spermine, suggesting active putrescine transport from the retina to the blood across the BRB. Our study using model cell lines of the inner and outer BRB showed that [3H]putrescine transport was time-, temperature-, and concentration-dependent, suggesting the involvement of carrier-mediated processes in putrescine transport at the inner and outer BRB. [3H]Putrescine transport was significantly reduced under Na+-free, Cl--free, and K+-replacement conditions, and attenuated by polyamines or organic cations such as choline, a choline transporter-like protein (CTL) substrate. Rat CTL1 cRNA-injected oocytes exhibited marked alterations in [3H]putrescine uptake, and CTL1 knockdown significantly reduced [3H]putrescine uptake in model cell lines, suggesting the possible participation of CTL1 in putrescine transport at the BRB.


Asunto(s)
Barrera Hematorretinal , Putrescina , Ratas , Animales , Barrera Hematorretinal/metabolismo , Putrescina/metabolismo , Ratas Wistar , Retina/metabolismo , Transporte Biológico , Poliaminas/metabolismo , Manitol/metabolismo
3.
Pharm Res ; 39(2): 223-237, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35112227

RESUMEN

PURPOSE: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS: The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 µM and 89.2 µM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS: Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.


Asunto(s)
Antidepresivos de Segunda Generación/metabolismo , Antidepresivos Tricíclicos/metabolismo , Barrera Hematoencefálica/metabolismo , Imipramina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Paroxetina/metabolismo , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Antidepresivos Tricíclicos/administración & dosificación , Transporte Biológico , Línea Celular , Imipramina/administración & dosificación , Inyecciones Intravenosas , Cinética , Masculino , Modelos Biológicos , Paroxetina/administración & dosificación , Permeabilidad , Ratas Wistar
4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555148

RESUMEN

At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Barrera Hematorretinal , Animales , Ratas , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematorretinal/metabolismo , Lipopolisacáridos , Receptor Toll-Like 4/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G113-G122, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075817

RESUMEN

Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system. Since monocarboxylate transporter 9 (MCT9) and monocarboxylate transporter 12 (MCT12) have been reported to accept Cr as a substrate, these transporters are proposed as candidates for Cr efflux transporter in the liver. The aim of this study was to elucidate the transport mechanism on Cr supply from the hepatocytes. Immunohistochemical staining of the rat liver sections revealed that both MCT9 and MCT12 were localized on the sinusoidal membrane of the hepatocytes. In the transport studies using Xenopus laevis oocyte expression system, [14C]Cr efflux from MCT9- or MCT12-expressing oocytes was significantly greater than that from water-injected oocytes. [14C]Cr efflux from primary cultured hepatocytes was significantly decreased following MCT12 mRNA knockdown, whereas this efflux was not decreased after mRNA knockdown of MCT9. Based on the extent of MCT12 protein downregulation and Cr efflux after knockdown of MCT12 in primary cultured rat hepatocytes, the contribution ratio of MCT12 in Cr efflux was calculated as 76.4%. Our study suggests that MCT12 substantially contributes to the efflux of Cr at the sinusoidal membrane of the hepatocytes.NEW & NOTEWORTHY Our study is the first to identify the role of monocarboxylate transporter 12 (MCT12) as a transporter of creatine (Cr) in the liver. MCT12 was found to significantly contribute to the efflux of Cr on the sinusoidal membrane of the hepatocytes. Since hepatocytes are known to be involved in creatine biosynthesis, the present findings can be beneficial for the regulation of Cr biosynthesis and supply.


Asunto(s)
Capilares/metabolismo , Creatina/metabolismo , Hepatocitos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animales , Creatina/sangre , Femenino , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Conejos , Ratas , Ratas Wistar , Xenopus
6.
Pharm Res ; 38(1): 113-125, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33527223

RESUMEN

PURPOSE: In this study, we investigated in detail the transport of phenytoin across the blood-brain barrier (BBB) to identify the transporter(s) involved in BBB-mediated phenytoin efflux from the brain. METHODS: We evaluated the brain-to-blood efflux transport of phenytoin in vivo by determining the brain efflux index (BEI) and uptake in brain slices. We additionally conducted brain perfusion experiments and BEI studies in P-glycoprotein (P-gp)-deficient mice. In addition, we determined the mRNA expression of monocarboxylate transporter (MCT) in isolated brain capillaries and performed phenytoin uptake studies in MCT-expressing Xenopus oocytes. RESULTS: [14C]Phenytoin brain efflux was time-dependent with a half-life of 17 min in rats and 31 min in mice. Intracerebral pre-administration of unlabeled phenytoin attenuated BBB-mediated phenytoin efflux transport, suggesting carrier-mediated phenytoin efflux transport across the BBB. Pre-administration of P-gp substrates in rats and genetic P-gp deficiency in mice did not affect BBB-mediated phenytoin efflux transport. In contrast, pre-administration of MCT8 inhibitors attenuated phenytoin efflux. Moreover, rat MCT8-expressing Xenopus oocytes exhibited [14C]phenytoin uptake, which was inhibited by unlabeled phenytoin. CONCLUSION: Our data suggest that MCT8 at the BBB participates in phenytoin efflux transport from the brain to the blood.


Asunto(s)
Anticonvulsivantes/farmacocinética , Barrera Hematoencefálica/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fenitoína/farmacocinética , Simportadores/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Femenino , Semivida , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Fenitoína/administración & dosificación , Ratas
7.
Biol Pharm Bull ; 44(3): 389-395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642546

RESUMEN

Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2ß) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2 = 0.714). Human t1/2ß was predicted using hFcRn TgM t1/2ß; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígenos de Histocompatibilidad Clase I/genética , Modelos Biológicos , Receptores Fc/genética , Animales , Anticuerpos Monoclonales/sangre , Evaluación Preclínica de Medicamentos , Humanos , Ratones Transgénicos , Modelos Animales
8.
Molecules ; 26(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34946611

RESUMEN

The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama.


Asunto(s)
Alcaloides/síntesis química , Quinolinas/síntesis química , Alcaloides/química , Animales , Anuros , Estructura Molecular , Panamá , Quinolinas/química , Estereoisomerismo
9.
FASEB J ; 33(12): 13966-13981, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638830

RESUMEN

The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Dinoprostona/metabolismo , Microsomas/metabolismo , Prostaglandina-E Sintasas/metabolismo , Convulsiones/metabolismo , Animales , Transporte Biológico/fisiología , Encéfalo/metabolismo , Capilares/metabolismo , Ciclooxigenasa 2/metabolismo , Epilepsia/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
10.
Biol Pharm Bull ; 43(8): 1241-1247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741944

RESUMEN

Retinal pigment epithelial (RPE) cells form the outer blood-retinal barrier (BRB) and regulate drug/compound exchange between the neural retina and blood in the fenestrated blood vessels of retinal choroid via membrane transporters. Recent studies have elucidated that RPE cells express hemichannels, which are opened by extracellular Ca2+ depletion and accept several drugs/compounds as a transporting substrate. The objective of this study was to elucidate the hemichannel-mediated compound transport properties of the outer BRB. In human RPE cells, namely ARPE-19 cells, time-dependent uptake of fluorescent hemichannel substrates, such as Lucifer Yellow, sulforhodamine-101 (SR-101), and propidium iodide (PI) was promoted under Ca2+-depleted conditions. The uptake of these substrates under Ca2+-depleted conditions exhibited saturable kinetics with a Michaelis-Menten constant (Km) of 87-109 µM. In addition, SR-101 and PI uptake by ARPE-19 cells was dependent of extracellular Ca2+ concentration, and that under Ca2+-depleted conditions was significantly decreased by typical substrates and/or inhibitors for hemichannels. Moreover, Ca2+-depleted conditions promoted the efflux transport of calcein from ARPE-19 cells, and the promoted calcein efflux transport was significantly inhibited by a typical hemichannel inhibitor. These results suggested that hemichannels at the outer BRB were involved in the influx and efflux transport of drugs/compounds.


Asunto(s)
Barrera Hematorretinal/fisiología , Calcio/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Isoquinolinas/farmacocinética , Propidio/farmacocinética , Epitelio Pigmentado de la Retina/citología , Rodaminas/farmacocinética
11.
Biol Pharm Bull ; 43(11): 1669-1677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132311

RESUMEN

Prostaglandin (PG) D2 is a lipid mediator, and in the brain, overproduction of PGD2 is reportedly involved in the progression and exacerbation of neuroinflammation. The objective of this study was to elucidate PGD2 efflux transport, under normal and inflammatory conditions, across the blood-brain barrier (BBB), which is formed by brain capillaries. Elimination of [3H]PGD2 across the BBB of normal and lipopolysaccharide (LPS)-induced inflammatory rats was examined by the intracerebral microinjection technique. After intracerebral injection, the percentage of [3H]PGD2 remaining in the ipsilateral cerebrum decreased with time, with a half-life of 13 min. This [3H]PGD2 elimination across the BBB was significantly inhibited by the co-administration of unlabeled PGD2, which suggests carrier-mediated PGD2 efflux transport at the BBB. In isolated rat brain capillaries, mRNA expression of organic anion transporter (Oat) 3, organic anion-transporting polypeptide (Oatp) 1a4, and multidrug resistance-associated protein (Mrp) 4 was observed. In addition, co-administration of substrates/inhibitors for Oat3, Oatp1a4, and/or Mrp4, such as benzylpenicillin and cefmetazole, reduced [3H]PGD2 elimination across the BBB. Data suggest that Oat3 and Mrp4, but not Oatp1a4 are involved in PGD2 elimination across the BBB, as Oatp1a4-expressing Xenopus (X.) oocytes did not show the significant [3H]PGD2 uptake compared with water-injected X. oocytes. In LPS-treated rats, [3H]PGD2 elimination across the BBB and mRNA expression levels of Oat3 and Mrp4 were significantly decreased. Our data suggest that Oat3- and Mrp4-mediated PGD2 elimination across the BBB is attenuated under inflammatory conditions.


Asunto(s)
Barrera Hematoencefálica/patología , Encefalopatías/inmunología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Prostaglandina D2/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/inmunología , Encefalopatías/patología , Cefmetazol/administración & dosificación , Modelos Animales de Enfermedad , Regulación hacia Abajo/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Masculino , Microinyecciones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Oocitos , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Penicilina G/administración & dosificación , Ratas , Xenopus laevis
12.
Biol Pharm Bull ; 43(3): 474-479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32115505

RESUMEN

Creatine transporter (CRT) deficiency (CRT-D) results in a significant reduction of brain creatine levels, which causes various neurological symptoms in early childhood, and diagnosis of the severity of CRT-D based on the residual CRT transport activity in liquid biopsy samples would be beneficial for early intervention. The apparent reduction in creatine transport activity in CRT-D is thought to be due to reduced intrinsic CRT-mediated creatine transport per CRT protein and/or reduced absolute CRT protein expression on the plasma membranes. The purpose of this study was thus to determine the normal level of intrinsic CRT-mediated creatine transport activity based on absolute CRT protein quantification using rat CRT-overexpressing HEK293 cells (CRT/HEK293 cells), and to clarify creatine transport in erythrocyte- and leukocyte-enriched fractions isolated from the circulating blood of rats. The intrinsic creatine transport rate was calculated to be 0.237 µL/(min·fmol CRT) based on the initial uptake rate and the absolute CRT protein level in CRT/HEK293 cells. Taking into account Avogadro's constant, the creatine transport activity per CRT protein is estimated to be 1190 creatine/(min·CRT molecule) in the presence of [14C]creatine at an extracellular concentration of 5 µM. Isolated leukocyte-enriched fraction exhibited mRNA expression of CRT and partially Na+-dependent [14C]creatine transport, whereas erythrocytes showed neither. These characteristics suggest that the leukocytes contain the CRT-mediated creatine uptake system, and are available for evaluation of residual CRT transport activity in CRT-D patients.


Asunto(s)
Creatina/metabolismo , Leucocitos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Células HEK293 , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos , Proteínas del Tejido Nervioso , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática , Ratas
13.
Biol Pharm Bull ; 43(5): 823-830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32378559

RESUMEN

Efficiency (speed and cost) and animal welfare are important factors in the development of new drugs. A novel method (the half-life method) was developed to predict the human plasma concentration-time profile of a monoclonal antibody (mAb) after intravenous (i.v.) administration using less data compared to the conventional approach; moreover, predicted results were comparable to conventional method. This new method use human geometric means of pharmacokinetics (PK) parameters and the non-human primates (NHP) half-life of each mAb. PK data on mAbs in humans and NHPs were collected from literature focusing on linear elimination, and the two-compartment model was used for analysis. The following features were revealed in humans: 1) the coefficient of variation in the distribution volume of the central compartment and at steady state of mAbs was small (22.6 and 23.8%, respectively) and 2) half-life at the elimination phase (t1/2ß) was the main contributor to plasma clearance. Moreover, distribution volume showed no significant correlation between humans and NHPs, and human t1/2ß showed a good correlation with allometrically scaled t1/2ß of NHP. Based on the features revealed in this study, we propose a new method for predicting the human plasma concentration-time profile of mAbs after i.v. dosing. When tested, this half-life method showed reasonable human prediction compared with a conventional empirical approach. The half-life method only requires t1/2ß to predict human PK, and is therefore able to improve animal welfare and potentially accelerate the drug development process.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Modelos Biológicos , Administración Intravenosa , Animales , Anticuerpos Monoclonales/sangre , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Macaca fascicularis , Macaca mulatta
14.
Microvasc Res ; 117: 16-21, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29247719

RESUMEN

l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain.


Asunto(s)
Arginina/metabolismo , Barrera Hematoencefálica/metabolismo , Capilares/metabolismo , Transportador de Aminoácidos Catiónicos 1/metabolismo , Células Endoteliales/metabolismo , Factores de Edad , Animales , Arginina/administración & dosificación , Arginina/sangre , Transporte Biológico , Barrera Hematoencefálica/embriología , Capilares/embriología , Transportador de Aminoácidos Catiónicos 1/genética , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Inyecciones Intravenosas , Masculino , Ratas Wistar , Regulación hacia Arriba
15.
Exp Eye Res ; 168: 128-137, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29366904

RESUMEN

The changes in the transport function of the outer blood-retinal barrier (BRB), formed by retinal pigment epithelial (RPE) cells, under pathological conditions need to be understood to normalize the retinal homeostasis in retinal diseases. Connexin 43 (Cx43) is known to be one of the basic units of gap junctions and hemichannels, which are opened by changes in extracellular conditions. The purpose of this study was to clarify the expression of Cx43 in RPE cells of the retina and Cx43 contribution to compound transport functions in RPE cells. Immunohistochemistry using guinea pig-derived polyclonal anti-Cx43 antibodies indicated that Cx43 is localized at the apical and intercellular membrane of mouse RPE cells. In addition, the immunoprecipitation study using the anti-Cx43 antibodies suggested that Cx43 at the intercellular membrane is associated with gap and adherent junctions in mouse RPE cells. The intercellular transfer after scrape loading of Lucifer Yellow (457 g/mol) among a human RPE cell line, ARPE-19 cells, was greater than that of fluorescein isothiocyanate-dextran (∼3000 g/mol). This Lucifer Yellow transfer was significantly inhibited by carbenoxolone, a connexin inhibitor, suggesting that connexins take part in compound transfer via gap junctions. In addition, Lucifer Yellow uptake by ARPE-19 cells in the absence of extracellular Ca2+, which is a condition of hemichannel opening, was increased compared with that under normal conditions. This uptake of Lucifer Yellow in the absence of extracellular Ca2+ was significantly reduced in the presence of hemichannel inhibitors and Cx43-gene silencing conditions. This study suggests the involvement of Cx43 in dye transfer via gap junctions among RPE cells and hemichannel-mediated compound transport between the neural retina and RPE cells.


Asunto(s)
Conexina 43/fisiología , Conexinas/metabolismo , Células Epiteliales/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematorretinal/metabolismo , Cadherinas/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Femenino , Cobayas , Humanos , Inmunohistoquímica , Masculino , Ratones , Proteína de la Zonula Occludens-1/metabolismo
16.
Neurochem Res ; 43(2): 500-510, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29209878

RESUMEN

Creatine is synthesized by S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT), and the creatine/phosphocreatine shuttle system mediated by creatine kinase (CK) is essential for storage and regeneration of high-energy phosphates in cells. Although the importance of this system in brain development is evidenced by the hereditary nature of creatine deficiency syndrome, the spatiotemporal cellular expression patterns of GAMT in developing brain remain unknown. Here we show that two waves of high GAMT expression occur in developing mouse brain. The first involves high expression in mitotic cells in the ventricular zone of the brain wall and the external granular layer of the cerebellum at the embryonic and neonatal stages. The second was initiated by striking up-regulation of GAMT in oligodendrocytes during the second and third postnatal weeks (i.e., the active myelination stage), which continued to adulthood. Distinct temporal patterns were also evident in other cell types. GAMT was highly expressed in perivascular pericytes and smooth muscle cells after birth, but not in adults. In neurons, GAMT levels were low to moderate in neuroblasts residing in the ventricular zone, increased during the second postnatal week when active dendritogenesis and synaptogenesis occur, and decreased to very low levels thereafter. Moderate levels were observed in astrocytes throughout development. The highly regulated, cell type-dependent expression of GAMT suggests that local creatine biosynthesis plays critical roles in certain phases of neural development. In accordance with this idea, we observed increased CK expression in differentiating neurons; this would increase creatine/phosphocreatine shuttle system activity, which might reflect increased energy demand.


Asunto(s)
Creatina/metabolismo , Guanidinoacetato N-Metiltransferasa/metabolismo , Neuronas/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Glicina/metabolismo , Metiltransferasas/metabolismo , Ratones Endogámicos C57BL , Fosfocreatina/metabolismo
17.
Mol Pharm ; 15(6): 2327-2337, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29688723

RESUMEN

Gabapentin is an antiseizure drug that is known to also have beneficial effects on the retinal cells. To use gabapentin in retinal pharmacotherapy, it is critical to understand gabapentin distribution in the retina. The purpose of this study was to clarify the kinetics of gabapentin influx transport across the inner and outer blood-retinal barrier (BRB), which regulates the exchange of compounds/drugs between the circulating blood and the retina. In vivo blood-to-retina gabapentin transfer was evaluated by the rat carotid artery injection technique. In addition, gabapentin transport was examined using in vitro models of the inner (TR-iBRB2 cells) and outer BRB (RPE-J cells). The in vivo [3H]gabapentin transfer to the rat retina across the BRB was significantly reduced in the presence of unlabeled gabapentin, suggesting transporter-mediated blood-to-retina distribution of gabapentin. Substrates of the Na+-independent l-type amino acid transporter 1 (LAT1), such as 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), also significantly inhibited the in vivo [3H]gabapentin transfer. [3H]Gabapentin uptake in TR-iBRB2 and RPE-J cells exhibited Na+-independent and saturable kinetics with a Km of 735 and 507 µM, respectively. Regarding the effect of various transporter substrates/inhibitors on gabapentin transport in these cells, LAT1 substrates significantly inhibited [3H]gabapentin uptake in TR-iBRB2 and RPE-J cells. In addition, preloaded [3H]gabapentin release from TR-iBRB2 and RPE-J cells was trans-stimulated by LAT1 substrates through the obligatory exchange mechanism as LAT1. Immunoblot analysis indicates the protein expression of LAT1 in TR-iBRB2 and RPE-J cells. These results imply that LAT1 at the inner and outer BRB takes part in gabapentin transport between the circulating blood and retina. Moreover, treatment of LAT1-targeted small interfering RNA to TR-iBRB2 cells significantly reduced both the level of LAT1 protein expression and [3H]gabapentin uptake activities in TR-iBRB2 cells. In conclusion, data from the present study indicate that LAT1 at the inner BRB is involved in retinal gabapentin transfer, and also suggest that LAT1 mediates gabapentin transport in the RPE cells.


Asunto(s)
Barrera Hematorretinal/metabolismo , Gabapentina/farmacocinética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Animales , Línea Celular , Endotelio Vascular/citología , Gabapentina/uso terapéutico , Masculino , Modelos Animales , Ratas Wistar , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/patología
18.
Mol Pharm ; 15(8): 3583-3594, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29966424

RESUMEN

The blood-to-retina supply of cyanocobalamin (vitamin B12) across the blood-retinal barrier (BRB) was investigated by synthesizing a fluorescence-labeled cyanocobalamin (Cy5-cyanocobalamin). In the in vivo analysis following internal jugular injection of Cy5-cyanocobalamin, confocal microscopy showed the distribution of Cy5-cyanocobalamin in the inner plexiform layer (IPL), the outer plexiform layer (OPL), and the retinal pigment epithelium (RPE). In the in vitro analysis with TR-iBRB2 cells, an in vitro model cell line of the inner BRB, Cy5-cyanocobalamin uptake by TR-iBRB2 cells exhibited a time-dependent increase after preincubation with transcobalamin II (TCII) protein, during its residual uptake without preincubation with TCII protein. The Cy5-cyanocobalamin uptake by TR-iBRB2 cells was significantly reduced in the presence of unlabeled cyanocobalamin, chlorpromazine, and chloroquine and was also significantly reduced under Ca2+-free conditions. Confocal microscopy of the TR-iBRB2 cells showed fluorescence signals of Cy5-cyanocobalamin and GFP-TCII protein, and these signals merged with each other. The RT-PCR, Western blot, and immunohistochemistry clearly suggested the expression of TCII receptor (TCII-R) in the inner and outer BRB. These results suggested the involvement of receptor-mediated endocytosis in the blood-to-retina transport of cyanocobalamin at the inner BRB with implying its possible involvement at the outer BRB.


Asunto(s)
Barrera Hematorretinal/metabolismo , Colorantes Fluorescentes/química , Receptores de Superficie Celular/metabolismo , Vitamina B 12/metabolismo , Complejo Vitamínico B/metabolismo , Animales , Carbocianinas/química , Línea Celular , Inyecciones Intravenosas , Microscopía Intravital , Masculino , Ratones , Microscopía Confocal , Modelos Animales , Ratas , Ratas Wistar , Epitelio Pigmentado de la Retina/metabolismo , Coloración y Etiquetado , Distribución Tisular , Transcobalaminas/metabolismo , Vitamina B 12/química , Vitamina B 12/farmacología , Complejo Vitamínico B/química , Complejo Vitamínico B/farmacología
19.
Pharm Res ; 35(5): 93, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29532174

RESUMEN

PURPOSE: To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS: EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS: The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 µM. CONCLUSIONS: Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.


Asunto(s)
Barrera Hematorretinal/metabolismo , Verapamilo/farmacocinética , Animales , Bloqueadores de los Canales de Calcio , Línea Celular , Colorantes Fluorescentes/química , Masculino , Microscopía Confocal , Microscopía Fluorescente , Modelos Animales , Permeabilidad , Ratas , Ratas Wistar , Epitelio Pigmentado de la Retina , Verapamilo/administración & dosificación , Verapamilo/química
20.
Biol Pharm Bull ; 41(3): 338-341, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491210

RESUMEN

Regulating γ-aminobutyric acid (GABA) uptake transport on the plasma membranes is required for its efficient clearance from the brain interstitial fluid. The purpose of this study was to clarify the assembly of taurine transporter (TauT/Slc6a6) and PSD-95/Disc-large/Zo-1 (PDZ) domain of Na+-H+ exchanger regulatory factor 1 (NHERF1) as a regulatory mechanism of TauT-mediated GABA transport activity. In vitro glutathione S-transferase (GST)-pull down assay and immunoblotting with anti-NHERF1 antibody revealed that NHERF1 protein was present in rat brain lysates as the binding protein of the GST-fusion TauT C-terminal protein with the PDZ-binding ETMM motif but not its corresponding deletion mutant lacking the motif. [3H]GABA uptake by TauT-NHERF1-coexpressing oocytes and TauT-singly expressing oocytes exhibited saturable kinetics with Michaelis-Menten constant values of 0.835±0.288 and 0.982±0.569 mM and a maximal transport velocity of 206±37 and 283±28 pmol/(h·oocyte), respectively. These results suggest that the assembly of TauT PDZ-binding motif and NHERF1 increases the maximal transport velocity of GABA rather than changes the affinity.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Cinética , Masculino , Oocitos/metabolismo , Dominios PDZ , Ratas , Ratas Wistar , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA