Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 152(3): 442-52, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374341

RESUMEN

ISWI-family enzymes remodel chromatin by sliding nucleosomes along DNA, but the nucleosome translocation mechanism remains unclear. Here we use single-molecule FRET to probe nucleosome translocation by ISWI-family remodelers. Distinct ISWI-family members translocate nucleosomes with a similar stepping pattern maintained by the catalytic subunit of the enzyme. Nucleosome remodeling begins with a 7 bp step of DNA translocation followed by 3 bp subsequent steps toward the exit side of nucleosomes. These multi-bp, compound steps are comprised of 1 bp substeps. DNA movement on the entry side of the nucleosome occurs only after 7 bp of exit-side translocation, and each entry-side step draws in a 3 bp equivalent of DNA that allows three additional base pairs to be moved to the exit side. Our results suggest a remodeling mechanism with well-defined coordination at different nucleosomal sites featuring DNA translocation toward the exit side in 1 bp steps preceding multi-bp steps of DNA movement on the entry side.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Emparejamiento Base , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Hidrólisis , Nucleosomas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
2.
Nature ; 602(7895): 129-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082446

RESUMEN

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Embrión de Mamíferos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Miocardio/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
3.
Development ; 146(19)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30814119

RESUMEN

Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM-associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit gene Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunopurification with mass spectrometry, we have determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocyte (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60c and BAF170 modulate chromatin accessibility, to promote accessibility at activated genes while closing chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific sites. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Complejos Multiproteicos/metabolismo , Organogénesis/genética , Subunidades de Proteína/metabolismo , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , ADN Helicasas/metabolismo , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
4.
Development ; 143(16): 2882-97, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27531948

RESUMEN

Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Animales , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Humanos
5.
Development ; 142(8): 1418-30, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25813539

RESUMEN

The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.


Asunto(s)
ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula , Cromatina/metabolismo , ADN Helicasas/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen/fisiología , Histonas/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Factores de Transcripción/genética
6.
Nucleic Acids Res ; 40(10): 4412-21, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22298509

RESUMEN

An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17-18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone-DNA interactions.


Asunto(s)
Adenosina Trifosfatasas/química , Factores de Transcripción/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Histonas/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo
7.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38370632

RESUMEN

Failure of septation of the interventricular septum (IVS) is the most common congenital heart defect (CHD), but mechanisms for patterning the IVS are largely unknown. We show that a Tbx5+/Mef2cAHF+ progenitor lineage forms a compartment boundary bisecting the IVS. This coordinated population originates at a first- and second heart field interface, subsequently forming a morphogenetic nexus. Ablation of Tbx5+/Mef2cAHF+ progenitors cause IVS disorganization, right ventricular hypoplasia and mixing of IVS lineages. Reduced dosage of the CHD transcription factor TBX5 disrupts boundary position and integrity, resulting in ventricular septation defects (VSDs) and patterning defects, including Slit2 and Ntn1 misexpression. Reducing NTN1 dosage partly rescues cardiac defects in Tbx5 mutant embryos. Loss of Slit2 or Ntn1 causes VSDs and perturbed septal lineage distributions. Thus, we identify essential cues that direct progenitors to pattern a compartment boundary for proper cardiac septation, revealing new mechanisms for cardiac birth defects.

8.
Biochim Biophys Acta ; 1809(9): 476-87, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21616185

RESUMEN

Chromatin is actively restructured by a group of proteins that belong to the family of ATP-dependent DNA translocases. These chromatin remodelers can assemble, relocate or remove nucleosomes, the fundamental building blocks of chromatin. The family of ATP-dependent chromatin remodelers has many properties in common, but there are also important differences that may account for their varying roles in the cell. Some of the important characteristics of these complexes have begun to be revealed such as their interactions with chromatin and their mechanism of operation. The different domains of chromatin remodelers are discussed in terms of their targets and functional roles in mobilizing nucleosomes. The techniques that have driven these findings are discussed and how these have helped develop the current models for how nucleosomes are remodeled. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Nucleosomas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Dev Cell ; 56(3): 292-309.e9, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33321106

RESUMEN

Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.


Asunto(s)
Redes Reguladoras de Genes , Haploinsuficiencia/genética , Cardiopatías Congénitas/genética , Modelos Biológicos , Proteínas de Dominio T Box/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Dosificación de Gen , Ventrículos Cardíacos/patología , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Transcripción Genética
10.
Nat Commun ; 11(1): 5913, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219211

RESUMEN

Over the last 3 decades ATP-dependent chromatin remodelers have been thought to recognize chromatin at the level of single nucleosomes rather than higher-order organization of more than one nucleosome. We show the yeast ISW1a remodeler has such higher-order structural specificity, as manifested by large allosteric changes that activate the nucleosome remodeling and spacing activities of ISW1a when bound to dinucleosomes. Although the ATPase domain of Isw1 docks at the SHL2 position when ISW1a is bound to either mono- or di-nucleosomes, there are major differences in the interactions of the catalytic subunit Isw1 with the acidic pocket of nucleosomes and the accessory subunit Ioc3 with nucleosomal DNA. By mutational analysis and uncoupling of ISW1a's dinucleosome specificity, we find that dinucleosome recognition is required by ISW1a for proper chromatin organization at promoters; as well as transcription regulation in combination with the histone acetyltransferase NuA4 and histone H2A.Z exchanger SWR1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Animales , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salmón , Factores de Transcripción/metabolismo , Xenopus
11.
Cell Rep ; 28(1): 282-294.e6, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269447

RESUMEN

Nucleosomes are the fundamental building blocks of chromatin that regulate DNA access and are composed of histone octamers. ATP-dependent chromatin remodelers like ISW2 regulate chromatin access by translationally moving nucleosomes to different DNA regions. We find that histone octamers are more pliable than previously assumed and distorted by ISW2 early in remodeling before DNA enters nucleosomes and the ATPase motor moves processively on nucleosomal DNA. Uncoupling the ATPase activity of ISW2 from nucleosome movement with deletion of the SANT domain from the C terminus of the Isw2 catalytic subunit traps remodeling intermediates in which the histone octamer structure is changed. We find restricting histone movement by chemical crosslinking also traps remodeling intermediates resembling those seen early in ISW2 remodeling with loss of the SANT domain. Other evidence shows histone octamers are intrinsically prone to changing their conformation and can be distorted merely by H3-H4 tetramer disulfide crosslinking.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Dominio Catalítico/genética , Simulación por Computador , Huella de ADN , Histonas/química , Espectrometría de Masas , Modelos Moleculares , Nucleosomas/química , Unión Proteica , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
12.
Biol Open ; 7(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29183906

RESUMEN

How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3) encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD). In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

13.
Nat Struct Mol Biol ; 20(2): 222-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23334290

RESUMEN

The ISWI family of ATP-dependent chromatin remodelers represses transcription by changing nucleosome positions. ISWI regulates nucleosome positioning by requiring a minimal length of extranucleosomal DNA for moving nucleosomes. ISW2 from Saccharomyces cerevisiae, a member of the ISWI family, has a conserved domain called SLIDE (SANT-like ISWI domain) that binds to extranucleosomal DNA ~19 base pairs from the edge of nucleosomes. Loss of SLIDE binding does not perturb binding of the ATPase domain or the initial movement of DNA inside of nucleosomes. Not only is extranucleosomal DNA required to help recruit ISW2, but also the interactions of the SLIDE domain with extranucleosomal DNA are functionally required to move nucleosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Western Blotting , Centrifugación por Gradiente de Densidad , Ensamble y Desensamble de Cromatina/genética , Transferencia Resonante de Energía de Fluorescencia , Regulación Fúngica de la Expresión Génica/genética , Radical Hidroxilo/metabolismo , Etiquetas de Fotoafinidad , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética
14.
Methods Mol Biol ; 809: 367-80, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22113289

RESUMEN

Packaging DNA into compact chromatin enables eukaryotic cells to organize and regulate their genome. Packaging is achieved by wrapping ∼146-147 bp of DNA around a histone octamer to form a nucleosome, the basic unit of chromatin. Chromatin is a barrier of the bound DNA to factors involved in DNA-dependent processes such as transcription, replication, recombination, and repair. Several multisubunit protein complexes can move nucleosome to different positions on DNA utilizing energy derived from ATP hydrolysis and thereby facilitate access to DNA. Several methods are described for measuring nucleosome movement both in vivo and in vitro which provide important insights into the remodeling process.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Adenosina Trifosfatasas/metabolismo , Southern Blotting , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
15.
Methods Mol Biol ; 809: 381-409, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22113290

RESUMEN

Chromatin plays a key regulatory role in several DNA-dependent processes as it regulates DNA access to different protein factors. Several multisubunit protein complexes interact, modify, or mobilize nucleosomes: the basic unit of chromatin, from its original location in an ATP-dependent manner to facilitate processes, such as transcription, replication, repair, and recombination. Knowledge of the interactions of chromatin remodelers with nucleosomes is a crucial requirement to understand the mechanism of chromatin remodeling. Here, we describe several methods to analyze the interactions of multisubunit chromatin-remodeling enzymes with nucleosomes.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Huella de ADN , Nucleosomas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
FEMS Microbiol Lett ; 326(2): 161-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22092490

RESUMEN

The Mycobacterium tuberculosis murG gene, Rv2153, was expressed in Escherichia coli murG(Ts) strain OV58 on a plasmid under the control of the arabinose-inducible araBAD promoter. Mycobacterium tuberculosis murG rescued the growth of E. coli murG(Ts) at the nonpermissive temperature: transformants were only obtained in the presence of 0.2% arabinose at 42 °C, and their growth rate was dependent on arabinose concentrations. However, no MurG activity was detected in membranes from the transformant grown in arabinose at 42 °C, while MraY activity was normal. This observation led to the development of a membrane-based scintillation proximity assay for exogenous sources of MurG. Addition of purified E. coli MurG resulted in the reconstitution of MurG and peptidoglycan synthesis in these membranes. MurG is an attractive target for drug discovery, but assays to measure the activity of purified MurG are challenging. This presents an easy method to measure the activity of exogenous sources of MurG for structure-activity studies of mutant MurG proteins. It can also be used to compare the activity of, or effect of inhibitors on, MurG from other bacterial species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/análisis , Técnicas Biosensibles/métodos , Escherichia coli/enzimología , Escherichia coli/genética , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , N-Acetilglucosaminiltransferasas/análisis , Arabinosa/metabolismo , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Prueba de Complementación Genética , Humanos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Peptidoglicano/metabolismo , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Transformación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA