Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO Rep ; 22(4): e50145, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33719157

RESUMEN

Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.


Asunto(s)
Actinas , Anhidrasas Carbónicas , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Anhidrasas Carbónicas/genética , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo
2.
Cell Mol Life Sci ; 79(4): 220, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35368213

RESUMEN

During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs). Analysis of RNA sequencing data and its experimental validation revealed cell migration as a prominent cellular function affected in HUVECs subjected to Protrudin knockdown. Further, our results demonstrate that knockdown of Protrudin inhibits focal adhesion kinase (FAK) activation in HUVECs and human aortic endothelial cells (HAECs). This is associated with a loss of polarized phospho-FAK distribution upon Protrudin knockdown as compared to Protrudin expressing HUVECs. Reduction of Protrudin also results in a perinuclear accumulation of mTOR and a decrease in VEGF-mediated S6K activation. However, further experiments suggest that the observed inhibition of angiogenesis in Protrudin knockdown cells is not affected by mTOR disturbance. Therefore, our findings suggest that defects in FAK activation and its abnormal subcellular distribution upon Protrudin knockdown are associated with a detrimental effect on endothelial cell migration and angiogenesis. Furthermore, mice with global Protrudin deletion demonstrate reduced retinal vascular progression. To conclude, our results provide evidence for a novel key role of Protrudin in endothelial cell migration and angiogenesis.


Asunto(s)
Neovascularización Patológica , Neovascularización Fisiológica , Animales , Movimiento Celular/genética , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Proteínas de Transporte Vesicular
3.
Bioessays ; 43(8): e2100033, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145916

RESUMEN

Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.


Asunto(s)
Actomiosina , Axones , Citoesqueleto de Actina , Humanos , Plasticidad Neuronal , Neuronas
4.
Biol Chem ; 400(9): 1129-1139, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31280237

RESUMEN

Synaptic plasticity underlies central brain functions, such as learning. Ca2+ signaling is involved in both strengthening and weakening of synapses, but it is still unclear how one signal molecule can induce two opposite outcomes. By identifying molecules, which can distinguish between signaling leading to weakening or strengthening, we can improve our understanding of how synaptic plasticity is regulated. Here, we tested gelsolin's response to the induction of chemical long-term potentiation (cLTP) or long-term depression (cLTD) in cultured rat hippocampal neurons. We show that gelsolin relocates from the dendritic shaft to dendritic spines upon cLTD induction while it did not show any relocalization upon cLTP induction. Dendritic spines are small actin-rich protrusions on dendrites, where LTD/LTP-responsive excitatory synapses are located. We propose that the LTD-induced modest - but relatively long-lasting - elevation of Ca2+ concentration increases the affinity of gelsolin to F-actin. As F-actin is enriched in dendritic spines, it is probable that increased affinity to F-actin induces the relocalization of gelsolin.


Asunto(s)
Espinas Dendríticas/metabolismo , Gelsolina/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Animales , Células Cultivadas , Ratas , Sinapsis/metabolismo
5.
Biol Chem ; 400(9): 1141-1146, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30951495

RESUMEN

The axon initial segment (AIS) comprises a sub-membranous lattice containing periodic actin rings. The overall AIS structure is insensitive to actin-disrupting drugs, but the effects of actin-disrupting drugs on actin rings lack consensus. We examined the effect of latrunculin A and B on the actin cytoskeleton of neurons in culture and actin rings in the AIS. Both latrunculin A and B markedly reduced the overall amount of F-actin in treated neurons in a dose-dependent manner, but the periodicity of actin rings remained unaffected. The insensitivity of AIS actin rings to latrunculin suggests they are relatively stable.


Asunto(s)
Actinas/metabolismo , Segmento Inicial del Axón/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Tiazolidinas/farmacología , Animales , Segmento Inicial del Axón/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas
6.
Mol Cell Neurosci ; 84: 77-84, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28479292

RESUMEN

Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the number or strength of synapses are physiological mechanisms behind learning. The growth and maturation of dendritic spines and the activity-induced changes to their morphology are all based on changes to the actin cytoskeleton. In this review, we will discuss the regulation of the actin cytoskeleton in dendritic spine formation and maturation, as well as in synaptic strengthening. Concerning spine formation, we will focus on spine initiation, which has received less attention in the literature. We will also examine the recently revealed regulation of the actin cytoskeleton through post-translational modifications of actin monomers, in addition to the conventional regulation of actin via actin-binding proteins.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de Microfilamentos/metabolismo , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología
7.
J Neurosci ; 36(19): 5299-313, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170127

RESUMEN

UNLABELLED: Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. SIGNIFICANCE STATEMENT: Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for regulating neuronal actin cytoskeleton that explains the specific organization and dynamics of actin in spines. The better we understand the regulation of the dendritic spine morphology, the better we understand what goes wrong in neurological diseases.


Asunto(s)
Actinas/metabolismo , Espinas Dendríticas/metabolismo , Potenciación a Largo Plazo , Neurogénesis , Procesamiento Proteico-Postraduccional , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Espinas Dendríticas/fisiología , Femenino , Humanos , Masculino , Fosforilación , Ratas , Tirosina/metabolismo
10.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29115990

RESUMEN

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Asunto(s)
Inflamación/metabolismo , Neuronas/metabolismo , Neuroprotección/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular/fisiología , Técnicas de Cocultivo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/patología , Masculino , Ratones , Microglía/metabolismo , Neuronas/patología
11.
Mol Cell Neurosci ; 61: 56-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24938665

RESUMEN

Precise control of the formation and development of dendritic spines is critical for synaptic plasticity. Consequently, abnormal spine development is linked to various neurological disorders. The actin cytoskeleton is a structural element generating specific changes in dendritic spine morphology. Although mechanisms underlying dendritic filopodia elongation and spine head growth are relatively well understood, it is still not known how spine heads are enlarged and stabilized during dendritic spine maturation. By using rat hippocampal neurons, we demonstrate that the size of the stable actin pool increases during the neuronal maturation process. Simultaneously, the treadmilling rate of the dynamic actin pool increases. We further show that myosin IIb controls dendritic spine actin cytoskeleton by regulating these two different pools of F-actin via distinct mechanisms. The findings indicate that myosin IIb stabilizes the stable F-actin pool through actin cross-linking. Simultaneously, activation of myosin IIb contractility increases the treadmilling rate of the dynamic pool of actin. Collectively, these data show that myosin IIb has a major role in the regulation of actin filament stability in dendritic spines, and elucidate the complex mechanism through which myosin IIb functions in this process. These new insights into the mechanisms underlying dendritic spine maturation further the model of dendritic spine morphogenesis.


Asunto(s)
Actinas/metabolismo , Espinas Dendríticas/fisiología , Neuronas/citología , Miosina Tipo IIB no Muscular/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animales , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hipocampo/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Toxinas Marinas , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Miosina Tipo IIB no Muscular/genética , Oxazoles/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Proteína Fluorescente Roja
12.
Front Mol Neurosci ; 17: 1376997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799616

RESUMEN

The location of the axon initial segment (AIS) at the junction between the soma and axon of neurons makes it instrumental in maintaining neural polarity and as the site for action potential generation. The AIS is also capable of large-scale relocation in an activity-dependent manner. This represents a form of homeostatic plasticity in which neurons regulate their own excitability by changing the size and/or position of the AIS. While AIS plasticity is important for proper functionality of AIS-containing neurons, the cellular and molecular mechanisms of AIS plasticity are poorly understood. Here, we analyzed changes in the AIS actin cytoskeleton during AIS plasticity using 3D structured illumination microscopy (3D-SIM). We showed that the number of longitudinal actin fibers increased transiently 3 h after plasticity induction. We further showed that actin polymerization, especially formin mediated actin polymerization, is required for AIS plasticity and formation of longitudinal actin fibers. From the formin family of proteins, Daam1 localized to the ends of longitudinal actin fibers. These results indicate that active re-organization of the actin cytoskeleton is required for proper AIS plasticity.

13.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963834

RESUMEN

Brain stores new information by modifying connections between neurons. When new information is learnt, a group of neurons gets activated and they are connected to each other via synapses. Dendritic spines are protrusions along neuronal dendrites where excitatory synapses are located. Dendritic spines are the first structures to protrude out from the dendrite to reach out to other neurons and establish a new connection. Thus, it is expected that neuronal activity enhances spine initiation. However, the molecular mechanisms linking neuronal activity to spine initiation are poorly known. Membrane binding BAR domain proteins are involved in spine initiation, but it is not known whether neuronal activity affects BAR domain proteins. Here, we used bicuculline treatment to activate excitatory neurons in organotypic hippocampal slices. With this experimental setup, we identified F-BAR domain containing growth arrest-specific protein (Gas7) as a novel spine initiation factor responding to neuron activity. Upon bicuculline addition, Gas7 clustered to create spine initiation hotspots, thus increasing the probability to form new spines in activated neurons. Gas7 clustering and localization was dependent on PI3-kinase (PI3K) activity and intact F-BAR domain. Gas7 overexpression enhanced N-WASP localization to clusters as well as it increased the clustering of actin. Arp2/3 complex was required for normal Gas7-induced actin clustering. Gas7 overexpression increased and knock-down decreased spine density in hippocampal pyramidal neurons. Taken together, we suggest that Gas7 creates platforms under the dendritic plasma membrane which facilitate spine initiation. These platforms grow on neuronal activation, increasing the probability of making new spines and new connections between active neurons. As such, we identified a novel molecular mechanism to link neuronal activity to the formation of new connections between neurons.


Asunto(s)
Actinas , Espinas Dendríticas , Actinas/metabolismo , Bicuculina , Células Cultivadas , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Proteínas del Tejido Nervioso/metabolismo
14.
J Cell Biol ; 173(3): 383-94, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16651381

RESUMEN

Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)-driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association-dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Modelos Biológicos , Fibras de Estrés/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinina/análisis , Actinina/genética , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto , Inhibidores Enzimáticos/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Adhesiones Focales/química , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Forminas , Glicoproteínas/análisis , Glicoproteínas/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Cinética , Microscopía Fluorescente , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Subunidades de Proteína/genética , ARN Interferente Pequeño/genética , Fibras de Estrés/química , Fibras de Estrés/efectos de los fármacos , Transfección , Vinculina/análisis , Zixina
15.
Cells ; 10(9)2021 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-34572042

RESUMEN

Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encefalopatías/patología , Encéfalo/crecimiento & desarrollo , Espinas Dendríticas/fisiología , Aprendizaje/fisiología , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Encefalopatías/metabolismo , Humanos , Dominios Proteicos
16.
Lancet Reg Health Eur ; 8: 100185, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34345876

RESUMEN

How will the coronavirus disease 2019 (COVID-19) pandemic develop in the coming months and years? Based on an expert survey, we examine key aspects that are likely to influence the COVID-19 pandemic in Europe. The challenges and developments will strongly depend on the progress of national and global vaccination programs, the emergence and spread of variants of concern (VOCs), and public responses to non-pharmaceutical interventions (NPIs). In the short term, many people remain unvaccinated, VOCs continue to emerge and spread, and mobility and population mixing are expected to increase. Therefore, lifting restrictions too much and too early risk another damaging wave. This challenge remains despite the reduced opportunities for transmission given vaccination progress and reduced indoor mixing in summer 2021. In autumn 2021, increased indoor activity might accelerate the spread again, whilst a necessary reintroduction of NPIs might be too slow. The incidence may strongly rise again, possibly filling intensive care units, if vaccination levels are not high enough. A moderate, adaptive level of NPIs will thus remain necessary. These epidemiological aspects combined with economic, social, and health-related consequences provide a more holistic perspective on the future of the COVID-19 pandemic.

17.
J Cell Biol ; 219(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965148

RESUMEN

Axon initial segment (AIS) functionality relies on a specific organization of the AIS with high enrichment of structural and functional proteins. In this issue, Torii et al. (2019. J. Cell. Biol.https://doi.org/10.1083/jcb.201907048) describe a mechanism for achieving a high density of proteins in the nascent AIS.


Asunto(s)
Segmento Inicial del Axón , Endocitosis
18.
iScience ; 23(5): 101053, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32344377

RESUMEN

The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS.

19.
BMC Cell Biol ; 10: 22, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19327143

RESUMEN

BACKGROUND: The PDZ-LIM proteins are a family of signalling adaptors that interact with the actin cross-linking protein, alpha-actinin, via their PDZ domains or via internal regions between the PDZ and LIM domains. Three of the PDZ-LIM proteins have a conserved 26-residue ZM motif in the internal region, but the structure of the internal region is unknown. RESULTS: In this study, using circular dichroism and nuclear magnetic resonance (NMR), we showed that the ALP internal region (residues 107-273) was largely unfolded in solution, but was able to interact with the alpha-actinin rod domain in vitro, and to co-localize with alpha-actinin on stress fibres in vivo. NMR analysis revealed that the titration of ALP with the alpha-actinin rod domain induces stabilization of ALP. A synthetic peptide (residues 175-196) that contained the N-terminal half of the ZM motif was found to interact directly with the alpha-actinin rod domain in surface plasmon resonance (SPR) measurements. Short deletions at or before the ZM motif abrogated the localization of ALP to actin stress fibres. CONCLUSION: The internal region of ALP appeared to be largely unstructured but functional. The ZM motif defined part of the interaction surface between ALP and the alpha-actinin rod domain.


Asunto(s)
Actinina/química , Proteínas de Microfilamentos/química , Actinina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Proteínas con Dominio LIM , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
20.
Front Mol Neurosci ; 12: 276, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803019

RESUMEN

In this study, we performed a comprehensive behavioral and anatomical analysis of the Missing in Metastasis (Mtss1/MIM) knockout (KO) mouse brain. We also analyzed the expression of MIM in different brain regions at different ages. MIM is an I-BAR containing membrane curving protein, shown to be involved in dendritic spine initiation and dendritic branching in Purkinje cells in the cerebellum. Behavioral analysis of MIM KO mice revealed defects in both learning and reverse-learning, alterations in anxiety levels and reduced dominant behavior, and confirmed the previously described deficiency in motor coordination and pre-pulse inhibition. Anatomically, we observed enlarged brain ventricles and decreased cortical volume. Although MIM expression was relatively low in hippocampus after early development, hippocampal pyramidal neurons exhibited reduced density of thin and stubby dendritic spines. Learning deficiencies can be connected to all detected anatomical changes. Both behavioral and anatomical findings are typical for schizophrenia mouse models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA