Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Express ; 29(12): 17700-17709, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154046

RESUMEN

We propose and demonstrate a temperature-insensitive directional transverse load sensor based on a fiber Bragg grating (FBG) inscribed in a section of dual side-hole fiber (DSHF). The application of transverse load results in an effective change in the refractive index and, consequently, changes in the DSHF birefringence. The directional transverse load response of the fabricated DSH-FBG was studied by monitoring the wavelength separations with transverse load applied in different direction with 15° increments. The load sensitivity exhibited two maxima and two minima in a polar coordinate system, achieving a maximum value of 699 pm/(N/mm) for transverse load applied along the slow axis and a minimum value of 285 pm/(N/mm) for transverse load applied along the fast axis. Subsequently, a finite element analysis (FEA) was conducted to simulate the resulting strain distribution of the DSHF with applied directional transverse load. The temperature response of the DSH-FBG transverse load sensor was also tested, yielding a low sensitivity of 1.5 × 10-2 pm/°C. Hence, the compact size, directional transverse load sensitivity, and temperature insensitivity of this device make it suitable for intelligent transverse load monitoring.

2.
Sensors (Basel) ; 20(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752307

RESUMEN

A high-energy nanosecond-pulsed ultraviolet (UV) laser Talbot interferometer for high-efficiency, mass production of fiber Bragg grating (FBG) array was experimentally demonstrated. High-quality FBG arrays were successfully inscribed in both H2-free and H2-loaded standard single-mode fibers (SMFs) with high inscription efficiency and excellent reproducibility. Compared with the femtosecond pulse that had a coherent length of several tens of micrometers, a longer coherent length (~10 mm) of the employed laser rendered a wider FBG wavelength versatility over 700 nm band (1200-1900 nm) without the need for optical path difference (OPD) compensation. Dense FBG array with center wavelength separation of ~0.4 nm was achieved and more than 1750 FBGs with separated center wavelength could be inscribed in a single H2-free or H2-loaded SMF in theory, which is promising for mass production of FBG arrays in industry. Moreover, precise focusing of laser beam was superfluous for the proposed system due to the high energy density of pulse. The proposed FBG inscription system was promising for industrialization production of dense FBG arrays.

3.
Opt Express ; 26(26): 34699-34710, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30650890

RESUMEN

We propose and demonstrate a method for tuning the beat frequency of a dual-polarization distributed feedback (DFB) fiber laser via fiber side polishing. This process can significantly alter the birefringence in DFB fiber lasers. Beat frequency evolutions in DFB fiber lasers were investigated, and the experimental results showed that the beat frequency tuning was dependent on polished thickness, roughness, and direction. The abrasive paper with a grain size of 1.8 µm was adopted to fine-tune the beat frequency. It was found that the beat frequency of DFB fiber lasers shifted toward higher frequencies with increasing polished thickness. However, the beat frequency shifted toward lower frequencies using a secondary side polishing process in the direction orthogonal to the first polished surface. As a result, the beat frequency of the DFB fiber laser was tuned in a wide frequency range from 475.5 MHz to 2080.4 MHz, which corresponds to a birefringence change of 1.2 × 10-5. Side-polished DFB fiber lasers could provide a novel approach to frequency division multiplexing for a large number of fiber laser sensors.

4.
Opt Express ; 26(18): 23770-23781, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184873

RESUMEN

We demonstrated a two-dimensional vector-bending sensor by use of fiber Bragg gratings (FBGs) inscribed in a homogeneous seven-core fiber. Seven FBGs were simultaneously inscribed in each of all seven cores using a modified Talbot interferometer and a lens scanning method. The vector bending response of six outer-core FBGs was investigated at all 360° directions with a step size of 15°. The bending sensitivities of the six outer-core FBGs display six perfect '8'-shaped patterns in a polar-coordinate system. That is, they exhibit strong bending-direction dependence with a maximum sensitivity of 59.47 pm/m-1. The orientation and amplitude of the vector bending can be reconstructed using measured Bragg wavelength shifts of any two off-diagonal outer-core FBGs. So, the six outer-core FBGs have 12 combinations for bend reconstruction, which can be averaged across multiple reconstructions to develop an accurate two-dimensional vector bending sensor. The average relative error was lower than 4.5% for reconstructed amplitude and less than 2.8% for reconstructed orientation angle θ. Moreover, the seven-core FBGs offer several advantages such as a compact structure, fabrication flexibility, and the temperature compensating ability of central-core FBG.

5.
Opt Express ; 26(10): 13311-13321, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801356

RESUMEN

A new method is proposed and demonstrated for fabricating phase-shifted fiber Bragg gratings (FBGs) using a variable-velocity scanning UV laser beam in combination with a shielded phase mask. The transmission properties of phase-shifted FBGs were analyzed based on coupled-mode theory and a transfer matrix method. The grating is divided into three parts to allow for easier analysis of FBG properties. These segments included a uniform FBG1 and FBG2 which were separated by a shielded section. A novel phase-shifted FBG was fabricated using this method, in which the refractive indices of FBG1 and FBG2 were different. Transmission properties of these phase-shifted FBGs were simulated numerically using MATLAB, and the experimental results and simulated results are in good agreement. In addition to the length and effective refractive index of the shielded section, the phase shift value of a phase-shifted FBG was also found to be dependent on the lengths and effective refractive indices of FBG1 and FBG2. Moreover, we predicted that changing the scanning velocity for fabricating FBG2 would adjust phase shift value, which exhibits a positive linear relationship with the scanning velocity. These results can provide guidelines for fabricating any phase shift value FBGs. This technique is simple, convenient, and may be developed further for use in fabricating novel tunable fiber filters or DFB fiber lasers.

6.
Sensors (Basel) ; 18(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486297

RESUMEN

We propose and demonstrate a cascaded hollow-core fiber (HCF) device for multi-parameter sensing based on the combination of antiresonant reflecting guidance (ARRG) and Mach-Zender interference (MZI). The device was fabricated by splicing two sections of HCF together. Two sets of fringes, which have different free spectral ranges, were generated from ARRG and MZI, respectively, and were aliasing in the transmission spectrum. The two sets of fringes were then separated using a band pass filter and a Gaussian fitting technique. The wavelengths at two transmission loss dips formed by ARRG and MZI exhibit a temperature sensitivity of 14.1 and 28.5 pm/°C, and a strain sensitivity of 0.4 and -0.8 pm/µÎµ, respectively. By using a crossing matrix with differences sensitivities, the cross-sensitivity between temperature and strain can be solved. The gas pressure response of the cascaded HCF device was also tested up to 300 °C, and linear relationships between the gas pressure sensitivities and temperature were found, which can be used in gas pressure application in various temperatures. Moreover, the proposed cascaded HCF sensor is compact, low cost, and simple for fabrication, and hence offers a promising way for the simultaneous measurement of multiple parameters, such as temperature, strain, and gas pressure.

7.
Opt Express ; 25(17): 20313-20322, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041713

RESUMEN

The refractive index sensing characteristics of the side-polished photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor are detailed investigated in this paper. We used the finite element method (FEM) to study the influences of the side-polished depth, air hole size, lattice constant, and the refractive index (RI) of the PCF material on sensing performance. The simulation results show that the side-polished depth, air hole size, lattice pitch have significant influence on the coupling strength between core mode and surface plasmon polaritons (SPPs), but have little influence on sensitivity; the coupling strength and sensitivity will significant increase with the decrease of RI of the PCF material. The sensitivity of the D-shaped PCF sensor is obtained to be as high as 21700 nm/RIU in the refractive index environment of 1.33-1.34, when the RI of the PCF material is controlled at 1.36. It revealed a new method of making ultra-high sensitivity SPR fiber sensor. Then we experimental demonstrated a SPR refractive sensor based on the side-polished single mode PCF and investigated the sensing performance. The experimental results of the plasmon resonance wavelength sensitivity agree well with the theoretical results. The presented gold-coated D-shaped PCF SPR sensor could be used as a simple, cost-effective, high sensitivity device in bio-chemical detection.

8.
Opt Express ; 24(24): 27890-27898, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906357

RESUMEN

A gas pressure sensor based on an antiresonant reflecting guidance mechanism in a hollow-core fiber (HCF) with an open microchannel is experimentally demonstrated for gas pressure sensing. The microchannel was created on the ring cladding of the HCF by femtosecond laser drilling to provide an air-core pressure equivalent to the external environment. The HCF cladding functions as an antiresonant reflecting waveguide, which induces sharp periodic lossy dips in the transmission spectrum. The proposed sensor exhibits a high pressure sensitivity of 3.592 nm/MPa and a low temperature cross-sensitivity of 7.5 kPa/°C. Theoretical analysis indicates that the observed high gas pressure sensitivity originates from the pressure induced refractive index change of the air in the hollow-core. The good operation durability and fabrication simplicity make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in harsh environments.

9.
Nanomicro Lett ; 17(1): 17, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39327371

RESUMEN

With the continuous development of wearable electronics, wireless sensor networks and other micro-electronic devices, there is an increasingly urgent need for miniature, flexible and efficient nanopower generation technology. Triboelectric nanogenerator (TENG) technology can convert small mechanical energy into electricity, which is expected to address this problem. As the core component of TENG, the choice of electrode materials significantly affects its performance. Traditional metal electrode materials often suffer from problems such as durability, which limits the further application of TENG. Graphene, as a novel electrode material, shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties. This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes. Various precision processing methods of graphene electrodes are introduced, and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed. In addition, the future development of graphene electrode-based TENGs is also prospectively discussed, aiming to promote the continuous advancement of graphene electrode-based TENGs.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39376076

RESUMEN

Magnetic nanorobot swarms can mimic group behaviors in nature and can be flexibly controlled by programmable magnetic fields, thereby having great potential in various applications. This paper presents a novel approach for the rapid and large-scale processing of laser-induced graphene (LIG) @Fe3O4-based-nanorobot swarms utilizing one-step UV laser processing technology. The swarm is capable of forming a variety of reversible morphologies under the magnetic field, including vortex-like and strip-like, as well as the interconversion of these, demonstrating high levels of controllability and flexibility. Moreover, the maximum forward motion speed of the nanorobot swarm is up to 2165 µm/s, and the drug loading and release ability of such a nanorobot swarm is enhanced about 50 times due to the presence of graphene, enabling the nanorobot swarm to show rapid and precise targeted drug delivery. Importantly, by controllable morphology transformation to conform to the complicated requirements for the magnetic field, the drug-loaded swarm can smoothly pass through a width-varying zigzag channel while maintaining 96% of the initial drug-loading, demonstrating that LIG @Fe3O4 NPs-based nanorobot swarm can provide effective and controllable targeted drug delivery in complex passages.

11.
Nat Commun ; 15(1): 4334, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773174

RESUMEN

Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.

12.
Opt Express ; 21(25): 31690-7, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514741

RESUMEN

Mechanism and sensing applications of antiresonant reflecting guidance in an alcohol-filled simplified hollow-core (SHC) photonic crystal fiber (PCF) are demonstrated. By filling one air hole in the air cladding of the PCF with alcohol, anti-resonant reflecting guidance of light can be achieved and energy leakage of the core modes can be induced at resonant wavelengths of the Fabry-Pérot (F-P) resonator formed by the alcohol-filled layer combined with the silica cladding in the cross-section of the PCF. The proposed structure exhibits periodic lossy dips in the transmission spectrum, of which the visibilities are sensitive to the refractive index of surrounding medium due to the reflectivity variation of the F-P resonator. Water level sensing is experimentally realized with this principle and the lossy dip exhibits a linear decrease against water level with a sensitivity of 1.1 dB/mm. The sensor is also sensitive to environmental temperature and a temperature sensitivity of -0.48 nm/°C is obtained between room temperature and 60 °C.


Asunto(s)
Alcoholes/química , Tecnología de Fibra Óptica/instrumentación , Fotometría/instrumentación , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Agua/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Fotones
13.
Opt Lett ; 38(4): 449-51, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23455098

RESUMEN

A fiber optical inclinometer based on modal interferometer is demonstrated for bend angle sensing. The device consists of a piece of simplified hollow core photonic crystal fiber sandwiched between single mode fibers with lateral offset. The measurement of bend angles up to 45° is demonstrated, and the spectrum exhibits a blueshift of over 50 nm. The sensitivity is found to increase with the applied bend angles and reaches 2.4 nm/deg at 45°, and the response is independent of the direction of bending. A low temperature sensitivity of 0.5 pm/°C is observed between room temperature and 1000°C. Due to its capacity for withstanding high temperature, the device can work as a direction-independent inclinometer in high-temperature environments.

14.
Small Methods ; 6(8): e2200329, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35616183

RESUMEN

Wet etching of silicon carbide typically exhibits poor etching efficiency and low aspect ratio. In this study, an etching structure that exploits anisotropic charge carrier flow to enable high-throughput, external-bias-free wet etching of high-aspect-ratio SiC micro/nano-structures is demonstrated. Specifically, by applying a catalytic metal coating at the bottom surface of a SiC wafer while introducing patterned ultraviolet light illumination from its top surface, spatial charge separation across the wafer is achieved, i.e., photogenerated electrons are channeled to the bottom to participate in the reduction reaction of an oxidant in the etchant solution, while holes flow to the top to trigger oxidation of SiC and subsequent etching. Such design largely suppresses recombination-induced charge losses, and when used in combination with a top metal catalyst mask, the structure yields a remarkable vertical etching rate of 0.737 µm min-1 and an aspect ratio of 3.2, setting new records for wet-etching methods for SiC.

15.
ACS Appl Mater Interfaces ; 14(3): 4647-4655, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35015501

RESUMEN

Joule heaters based on flexible thin films have attracted a significant amount of attention in both academia and the industry. However, it has been highly challenging to fabricate such heaters. In this study, a one-step laser induction method was proposed to prepare fluorine-doped laser-induced graphene (F-LIG) with stable and superhydrophobic properties by confining a 355 nm ultraviolet laser at the interface between the fluorinated ethylene propylene (FEP) film and polyimide (PI) film. The superhydrophobic properties of the F-LIG composite films could be attributed to the doping of fluorine elements and the laser-processed microstructures, which could be tuned by laser processing parameters. Based on the processed F-LIG films, Joule deicing heaters were developed and their deicing efficiencies are 7 times higher than that of the undoped LIG-based deicing heater. The method will provide new means and ideas to develop LIG-based flexible devices.

16.
Adv Mater ; 33(44): e2104290, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510586

RESUMEN

Laser-induced graphene (LIG) has emerged as a promising and versatile method for high-throughput graphene patterning; however, its full potential in creating complex structures and devices for practical applications is yet to be explored. In this study, an in-situ growing LIG process that enables to pattern superhydrophobic fluorine-doped graphene on fluorinated ethylene propylene (FEP)-coated polyimide (PI) is demonstrated. This method leverages on distinct spectral responses of FEP and PI during laser excitation to generate the environment preferentially for LIG formation, eliminating the need for multistep processes and specific atmospheres. The structured and water-repellant structures rendered by the spectral-tuned interfacial LIG process are suitable as the electrode for the construction of a flexible droplet-based electricity generator (DEG), which exhibits high power conversion efficiency, generating a peak power density of 47.5 W m-2 from the impact of a water droplet 105 µL from a height of 25 cm. Importantly, the device exhibits superior cyclability and operational stability under high humidity and various pH conditions. The facile process developed can be extended to realize various functional devices.

17.
ACS Appl Mater Interfaces ; 12(37): 42437-42445, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32840997

RESUMEN

Underwater gas-bubble manipulation in aqueous environments is of great importance in industry and academia. Although the underwater gas bubble has been proved to be directionally transportable by various structures, transporting gas bubbles in 3D space remains a challenge. In this research, two kinds of tapered pillars, that is, ladderlike and helical ladderlike, were proposed for manipulating gas bubbles. To fabricate such unique structures, an improved alternative coating and etching method was developed. To meet the requirements of underwater gas-bubble transport, a modified gas-bubble slippery technology was also developed to enhance the aerophilic ability. The dynamics of the gas bubble was analyzed using a high-speed camera. The Laplace force that resulted from the geometry gradient was found to play a significant role in tuning the gas-bubble velocity. Through adjustments on the wettability, tilt angle, and geometry of each section of the tapered pillar, tuning the transport velocity from 113.9 ± 10.3 to 309.1 ± 5.8 mm/s becomes possible. On the basis of these findings, the helical ladderlike tapered pillar was fabricated and demonstrated to be able to transport gas bubbles in 3D space. These results may provide a new and systematic way to design and fabricate materials and structures for directional gas-bubble transport in 3D space.

18.
Nanoscale ; 11(17): 8319-8326, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30982840

RESUMEN

The temporal response of conventional ZnO nanowire-based photodetectors suffers from the influence of carrier mobility and high electrical resistance. As a result, these devices can be prohibitively slow for some applications, generally with a response time on the order of 1 second. This study presents a novel ZnO nanowire-based microfiber coupler structure for all-optical photodetection without the demand for photocurrent generation. In this design, two waveguides are directly adsorbed by van der Waals forces or electrostatic forces. Compared with the conventional electrical bridge structure, the optical coupling architecture makes the device both compact and stable. In this configuration, resonance dips form in the transmission spectrum when the phase-matching conditions of the two waveguides are satisfied. The measurements of the resulting wavelength shift, low noise levels, and repetition time confirmed that the proposed optical device could operate as a photodetector. The device exhibits superior performance with a sensitivity of 1.657 nm (W cm-2)-1 and a response time of 0.43 ms. In addition, the detector features a simple fabrication as there is no need for extra modification of ZnO nanowires. The resulting photodetection capabilities could provide a new functionality for novel all-optical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA