Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Med ; 12(1): e703, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073459

RESUMEN

BACKGROUND: Chemoresistance to cisplatin (DDP) remains a major challenge in advanced gastric cancer (GC) treatment. Although accumulating evidence suggests an association between dysregulation of long non-coding RNAs (lncRNAs) and chemoresistance, the regulatory functions and complexities of lncRNAs in modulating DDP-based chemotherapy in GC remain under-investigated. This study was designed to explore the critical chemoresistance-related lncRNAs in GC and identify novel therapeutic targets for patients with chemoresistant GC. METHODS: Chemoresistance-related lncRNAs were identified through microarray and verified through a quantitative real-time polymerase chain reaction (qRT-PCR). Proteins bound by lncRNAs were identified through a human proteome array and validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. Co-immunoprecipitation and ubiquitination assays were performed to explore the molecular mechanisms of the Musashi2 (MSI2) post-modification. The effects of LINC00942 (LNC942) and MSI2 on DDP-based chemotherapy were investigated through MTS, apoptosis assays and xenograft tumour formation in vivo. RESULTS: LNC942 was found to be up-regulated in chemoresistant GC cells, and its high expression was positively correlated with the poor prognosis of patients with GC. Functional studies indicated that LNC942 confers chemoresistance to GC cells by impairing apoptosis and inducing stemness. Mechanically, LNC942 up-regulated the MSI2 expression by preventing its interaction with SCFß-TRCP E3 ubiquitin ligase, eventually inhibiting ubiquitination. Then, LNC942 stabilized c-Myc mRNA in an N6-methyladenosine (m6 A)-dependent manner. As a potential m6 A recognition protein, MSI2 stabilized c-Myc mRNA with m6 A modifications. Moreover, inhibition of the LNC942-MSI2-c-Myc axis was found to restore chemosensitivity both in vitro and in vivo. CONCLUSIONS: These results uncover a chemoresistant accelerating function of LNC942 in GC, and disrupting the LNC942-MSI2-c-Myc axis could be a novel therapeutic strategy for GC patients undergoing chemoresistance.


Asunto(s)
Cisplatino/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Genes myc/efectos de los fármacos , ARN Largo no Codificante/agonistas , Proteínas de Unión al ARN/antagonistas & inhibidores , Cisplatino/uso terapéutico , Genes myc/fisiología , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/uso terapéutico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
2.
Front Cell Dev Biol ; 9: 741736, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977006

RESUMEN

Hypoxia is an important characteristic of the tumor microenvironment. Tumor cells can survive and propagate under the hypoxia stress by activating a series of adaption response. Herein, we found that lysine-specific demethylase 5B (KDM5B) was upregulated in gastric cancer (GC) under hypoxia conditions. The genetic knockdown or chemical inhibition of KDM5B impaired the growth of GC cell adapted to hypoxia. Interestingly, the upregulation of KDM5B in hypoxia response was associated with the SUMOylation of KDM5B. SUMOylation stabilized KDM5B protein by reducing the competitive modification of ubiquitination. Furthermore, the protein inhibitor of activated STAT 4 (PIAS4) was determined as the SUMO E3 ligase, showing increased interaction with KDM5B under hypoxia conditions. The inhibition of KDM5B caused significant downregulation of hypoxia-inducible factor-1α (HIF-1α) protein and target genes under hypoxia. As a result, co-targeting KDM5B significantly improved the antitumor efficacy of antiangiogenic therapy in vivo. Taken together, PIAS4-mediated SUMOylation stabilized KDM5B protein by disturbing ubiquitination-dependent proteasomal degradation to overcome hypoxia stress. Targeting SUMOylation-dependent KDM5B upregulation might be considered when the antiangiogenic therapy was applied in cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA