Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neurogenetics ; 12(4): 315-23, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21837366

RESUMEN

Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient's phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders.


Asunto(s)
Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN , Pruebas Neuropsicológicas , Niño , Preescolar , Femenino , Humanos , Masculino , Linaje , Fenotipo , Conducta Social
2.
J Autism Dev Disord ; 45(10): 3148-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26043846

RESUMEN

Cognitive control dysfunctions, like inhibitory and attentional flexibility deficits are assumed to underlie repetitive behavior in individuals with autism spectrum disorders (ASD). In the present study, prepotent response inhibition and attentional flexibility were examined in 64 high-functioning individuals with ASD and 53 control participants. Performance under different task conditions were tested both in response to visual and auditory information, and requiring a motor or verbal response. Individuals with ASD showed significant more control dysfunctions than typically developing participants on the auditory computer task. Inhibitory control and attentional flexibility predicted RRB in everyday life. Specifically, response inhibition in reaction to visual information and task switching in reaction to auditory information predicted motor and sensory stereotyped behavior.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Inhibición Psicológica , Conducta Estereotipada , Adolescente , Adulto , Atención , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Desempeño Psicomotor
3.
Biol Psychiatry ; 68(4): 320-8, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20346443

RESUMEN

BACKGROUND: Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral deficits and complex genetic etiology. A recent study of 517 ASD families implicated DOCK4 by single nucleotide polymorphism (SNP) association and a microdeletion in an affected sibling pair. METHODS: The DOCK4 microdeletion on 7q31.1 was further characterized in this family using QuantiSNP analysis of 1M SNP array data and reverse transcription polymerase chain reaction. Extended family members were tested by polymerase chain reaction amplification of junction fragments. DOCK4 dosage was measured in additional samples using SNP arrays. Since QuantiSNP analysis identified a novel CNTNAP5 microdeletion in the same affected sibling pair, this gene was sequenced in 143 additional ASD families. Further polymerase chain reaction-restriction fragment length polymorphism analysis included 380 ASD cases and suitable control subjects. RESULTS: The maternally inherited microdeletion encompassed chr7:110,663,978-111,257,682 and led to a DOCK4-IMMP2L fusion transcript. It was also detected in five extended family members with no ASD. However, six of nine individuals with this microdeletion had poor reading ability, which prompted us to screen 606 other dyslexia cases. This led to the identification of a second DOCK4 microdeletion co-segregating with dyslexia. Assessment of genomic background in the original ASD family detected a paternal 2q14.3 microdeletion disrupting CNTNAP5 that was also transmitted to both affected siblings. Analysis of other ASD cohorts revealed four additional rare missense changes in CNTNAP5. No exonic deletions of DOCK4 or CNTNAP5 were seen in 2091 control subjects. CONCLUSIONS: This study highlights two new risk factors for ASD and dyslexia and demonstrates the importance of performing a high-resolution assessment of genomic background, even after detection of a rare and likely damaging microdeletion using a targeted approach.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Dislexia/genética , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Adulto , Estudios de Casos y Controles , Niño , Preescolar , ADN/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Valores de Referencia , Eliminación de Secuencia , Índice de Severidad de la Enfermedad , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA