Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583246

RESUMEN

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Asunto(s)
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Proteolisis/efectos de los fármacos , Estructura Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Endopeptidasas
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791363

RESUMEN

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Asunto(s)
Biología Computacional , Biblioteca de Péptidos , Humanos , Biología Computacional/métodos , Especificidad por Sustrato , Farnesiltransferasa/metabolismo , Farnesiltransferasa/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Unión Proteica
3.
J Pharmacol Exp Ther ; 386(2): 117-128, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36631279

RESUMEN

Preclinical and clinical studies have identified the ghrelin receptor [growth hormone secretagogue receptor (GHSR)1a] as a potential target for treating alcohol use disorder. A recent phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high-throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentration-response assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison with its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced ß-arrestin recruitment relative to its parent compound. Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knockout for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. SIGNIFICANCE STATEMENT: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR)1a have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provide new structure-activity relationship insight into GHSR1a inverse agonism.


Asunto(s)
Alcoholismo , Ratas , Masculino , Femenino , Animales , Receptores de Ghrelina/metabolismo , Agonismo Inverso de Drogas
4.
J Chem Inf Model ; 63(22): 7159-7170, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37939203

RESUMEN

Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 µs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.


Asunto(s)
Detergentes , Proteínas de la Membrana , Animales , Detergentes/química , Detergentes/metabolismo , Proteínas de la Membrana/química , Fosfolípidos , Aciltransferasas , Cabras/metabolismo , Solubilidad
5.
Addict Biol ; 27(1): e13033, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33908131

RESUMEN

Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.


Asunto(s)
Etanol/metabolismo , Ghrelina/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Glucemia/metabolismo , Ghrelina/análogos & derivados , Humanos , Masculino , Ratas , Transducción de Señal
6.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769472

RESUMEN

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.


Asunto(s)
Farnesiltransferasa/metabolismo , Prenilación de Proteína , Proteoma/análisis , Secuencia de Aminoácidos , Animales , Bases de Datos de Proteínas , Humanos , Biblioteca de Péptidos , Fosfatos de Poliisoprenilo/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Ratas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
7.
Biochemistry ; 59(11): 1149-1162, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32125828

RESUMEN

Protein prenylation is a posttranslational modification involving the attachment of a C15 or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in their protein substrates, but recent studies in yeast- and mammalian-based systems have demonstrated FTase can also accept sequences that diverge in length from the canonical four-amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical assays. Strikingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these sequences. These findings expand the substrate pool of sequences that can be potentially prenylated, further refine our understanding of substrate recognition by FTase and GGTase-I, and suggest the possibility of a new class of prenylated proteins within proteomes.


Asunto(s)
Farnesiltransferasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Farnesiltransferasa/química , Farnesiltransferasa/genética , Cinética , Prenilación , Prenilación de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
8.
J Biol Chem ; 294(39): 14166-14174, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31413115

RESUMEN

Integral membrane proteins represent a large and diverse portion of the proteome and are often recalcitrant to purification, impeding studies essential for understanding protein structure and function. By combining co-evolutionary constraints and computational modeling with biochemical validation through site-directed mutagenesis and enzyme activity assays, we demonstrate here a synergistic approach to structurally model purification-resistant topologically complex integral membrane proteins. We report the first structural model of a eukaryotic membrane-bound O-acyltransferase (MBOAT), ghrelin O-acyltransferase (GOAT), which modifies the metabolism-regulating hormone ghrelin. Our structure, generated in the absence of any experimental structural data, revealed an unanticipated strategy for transmembrane protein acylation with catalysis occurring in an internal channel connecting the endoplasmic reticulum lumen and cytoplasm. This finding validated the power of our approach to generate predictive structural models for other experimentally challenging integral membrane proteins. Our results illuminate novel aspects of membrane protein function and represent key steps for advancing structure-guided inhibitor design to target therapeutically important but experimentally intractable membrane proteins.


Asunto(s)
Aciltransferasas/química , Dominio Catalítico , Acetilación , Aciltransferasas/metabolismo , Animales , Ghrelina/química , Ghrelina/metabolismo , Humanos , Células Sf9 , Spodoptera
9.
J Biol Chem ; 293(8): 2770-2785, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29282289

RESUMEN

Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid CAAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical CAAX sequence, specifically C(x)3X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C(x)3X sequences. As the search to identify physiologically relevant C(x)3X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Modelos Moleculares , Prenilación de Proteína , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Secuencias de Aminoácidos , Animales , Bases de Datos de Proteínas , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Prenilación de Proteína/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteómica/métodos , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
10.
Biochem Soc Trans ; 47(1): 169-178, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30626708

RESUMEN

Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Ghrelin signaling is implicated in a variety of neurological and physiological processes, but is most well known for its roles in controlling hunger and metabolic regulation. Ghrelin octanoylation is catalyzed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. From the status of ghrelin as the only substrate for GOAT in the human genome to the source and requirement for the octanoyl acyl donor, the ghrelin-GOAT system is defined by multiple unique aspects within both protein biochemistry and endocrinology. In this review, we examine recent advances in our understanding of the interactions and mechanisms leading to ghrelin modification by GOAT, discuss the potential sources for the octanoyl acyl donor required for ghrelin's activation, and summarize the current landscape of molecules targeting ghrelin octanoylation through GOAT inhibition.


Asunto(s)
Ghrelina/metabolismo , Aciltransferasas/metabolismo , Animales , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Bioorg Chem ; 79: 98-106, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29738973

RESUMEN

Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling.


Asunto(s)
Aciltransferasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Ghrelina/metabolismo , beta-Alanina/análogos & derivados , Acilación , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Dominio Catalítico , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Ghrelina/análogos & derivados , Humanos , Estructura Molecular , Unión Proteica , beta-Alanina/química
12.
Biochemistry ; 56(7): 919-931, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28134508

RESUMEN

The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Inhibidores Enzimáticos/farmacología , Ghrelina/metabolismo , Triterpenos/farmacología , Acilación , Aciltransferasas/química , Animales , Cisteína/química , Cisteína/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Ghrelina/química , Humanos , Proteínas de la Membrana , Ratones , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Triterpenos/química
13.
Anal Chem ; 89(24): 13502-13507, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29144728

RESUMEN

Here, we introduce protein-lipidation quantitation (PLQ)-the first method for quantitative analysis of both a substrate and a product of protein lipidation in a biologically relevant context. Such analysis is required to study roles of protein lipidation in cellular regulation. In PLQ, the substrate is fused with a fluorescent protein to facilitate quantitative detection of both the nonlipidated substrate and the lipidated product. When expressed in cells with endogenous lipidation activity, the substrate is intracellularly lipidated. Following cell lysis and sampling crude cell lysate for analysis, the substrate and the product are separated by surfactant-mediated capillary electrophoresis (CE) and quantitated by integrating fluorescence intensity over respective CE peaks. In this work, we prove PLQ in principle and demonstrate its robustness to changes in structures of the substrate and lipid donor. Finally, PLQ analysis confirms a hypothesized link between a mutation in p53 and cellular prenylation activity.


Asunto(s)
Lípidos/análisis , Lipoproteínas/análisis , Electroforesis Capilar , Proteínas Luminiscentes/química , Modelos Moleculares , Conformación Molecular , Tensoactivos/química
14.
Mol Membr Biol ; 33(6-8): 111-124, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29143554

RESUMEN

Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.

15.
Biochemistry ; 54(4): 1100-10, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25562443

RESUMEN

Ghrelin O-acyltransferase (GOAT) is an integral membrane acyltransferase responsible for catalyzing a serine-octanoylation posttranslational modification within the peptide hormone ghrelin. Ghrelin requires this octanoylation for its biological activity in stimulating appetite and in regulating other physiological pathways involved in energy balance. Blocking ghrelin acylation using GOAT inhibitors is a new potential avenue to treat health conditions impacted by ghrelin signaling, such as obesity and diabetes. Designing novel and potent GOAT inhibitors as potential therapeutics requires insight into the interactions between the ghrelin and octanoyl coenzyme A substrates and the GOAT active site. Through structure-activity investigation of ghrelin-mimetic peptide substrates and inhibitors, we have analyzed the amino acid selectivity of the enzyme as well as the functional groups involved in substrate recognition by human GOAT (hGOAT). This analysis reveals that hGOAT both prefers and tolerates a distinct set of chemical properties at each position within the N-terminal sequence of ghrelin and that sequence elements downstream of the ghrelin N-terminal sequence contribute to ghrelin binding to hGOAT. We also found that the hGOAT active site exhibits a marked preference for binding an eight-carbon acyl chain, which potentially explains the biological observation of ghrelin octanoylation in light of the acyl donor promiscuity reported for GOAT. Bioinformatics analysis, guided by our reactivity data, supports the conclusion that ghrelin is a unique substrate for hGOAT within the human proteome, providing further justification for the ghrelin-hGOAT system as a desirable drug target. By defining an array of substrate-enzyme interactions used by hGOAT to bind, recognize, and acylate ghrelin, this study yields novel insight into the character of the hGOAT active site that can serve as a guide toward the rational design of hGOAT inhibitors.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Ghrelina/química , Ghrelina/metabolismo , Acilación/fisiología , Aciltransferasas/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Ghrelina/genética , Humanos , Insectos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Relación Estructura-Actividad
16.
Bioconjug Chem ; 26(12): 2542-53, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26561785

RESUMEN

Site-specific protein labeling is an important technique in protein chemistry and is used for diverse applications ranging from creating protein conjugates to protein immobilization. Enzymatic reactions, including protein prenylation, have been widely exploited as methods to accomplish site-specific labeling. Enzymatic prenylation is catalyzed by prenyltransferases, including protein farnesyltransferase (PFTase) and geranylgeranyltransferase type I (GGTase-I), both of which recognize C-terminal CaaX motifs with different specificities and transfer prenyl groups from isoprenoid diphosphates to their respective target proteins. A number of isoprenoid analogues containing bioorthogonal functional groups have been used to label proteins of interest via PFTase-catalyzed reaction. In this study, we sought to expand the scope of prenyltransferase-mediated protein labeling by exploring the utility of rat GGTase-I (rGGTase-I). First, the isoprenoid specificity of rGGTase-I was evaluated by screening eight different analogues and it was found that those with bulky moieties and longer backbone length were recognized by rGGTase-I more efficiently. Taking advantage of the different substrate specificities of rat PFTase (rPFTase) and rGGTase-I, we then developed a simultaneous dual labeling method to selectively label two different proteins by using isoprenoid analogue and CaaX substrate pairs that were specific to only one of the prenyltransferases. Using two model proteins, green fluorescent protein with a C-terminal CVLL sequence (GFP-CVLL) and red fluorescent protein with a C-terminal CVIA sequence (RFP-CVIA), we demonstrated that when incubated together with both prenyltransferases and the selected isoprenoid analogues, GFP-CVLL was specifically modified with a ketone-functionalized analogue by rGGTase-I and RFP-CVIA was selectively labeled with an alkyne-containing analogue by rPFTase. By switching the ketone-containing analogue to an azide-containing analogue, it was possible to create protein tail-to-tail dimers in a one-pot procedure through the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Overall, with the flexibility of using different isoprenoid analogues, this system greatly extends the utility of protein labeling using prenyltransferases.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Prenilación de Proteína , Terpenos/metabolismo , Animales , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Modelos Moleculares , Ratas , Coloración y Etiquetado , Especificidad por Sustrato , Terpenos/química , Proteína Fluorescente Roja
17.
Bioorg Med Chem Lett ; 25(14): 2800-3, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26009163

RESUMEN

Inhibitors of ghrelin O-acyltransferase (GOAT) have untapped potential as therapeutics targeting obesity and diabetes. We report the first examples of GOAT inhibitors incorporating a triazole linkage as a biostable isosteric replacement for the ester bond in ghrelin and amide bonds in previously reported GOAT inhibitors. These triazole-containing inhibitors exhibit sub-micromolar inhibition of the human isoform of GOAT (hGOAT), and provide a foundation for rapid future chemical diversification and optimization of hGOAT inhibitors.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Triazoles/química , Aciltransferasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Humanos , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/metabolismo
18.
Biochemistry ; 53(2): 434-46, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24344934

RESUMEN

Posttranslational modifications are vital for the function of many proteins. Prenylation is one such modification, wherein protein geranylgeranyltransferase type I (GGTase-I) or protein farnesyltransferase (FTase) modify proteins by attaching a 20- or 15-carbon isoprenoid group, respectively, to a cysteine residue near the C-terminus of a target protein. These enzymes require a C-terminal Ca1a2X sequence on their substrates, with the a1, a2, and X residues serving as substrate-recognition elements for FTase and/or GGTase-I. While crystallographic structures of rat GGTase-I show a tightly packed and hydrophobic a2 residue binding pocket, consistent with a preference for moderately sized a2 residues in GGTase-I substrates, the functional impact of enzyme-substrate contacts within this active site remains to be determined. Using site-directed mutagenesis and peptide substrate structure-activity studies, we have identified specific active-site residues within rat GGTase-I involved in substrate recognition and developed novel GGTase-I variants with expanded/altered substrate selectivity. The ability to drastically alter GGTase-I selectivity mirrors similar behavior observed in FTase but employs mutation of a distinct set of structurally homologous active-site residues. Our work demonstrates that tunable selectivity may be a general phenomenon among multispecific enzymes involved in posttranslational modification and raises the possibility of variable substrate selectivity among GGTase-I orthologues from different organisms. Furthermore, the GGTase-I variants developed herein can serve as tools for studying GGTase-I substrate selectivity and the effects of prenylation pathway modifications on specific proteins.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Ingeniería de Proteínas , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Animales , Biocatálisis , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Humanos , Modelos Moleculares , Estructura Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Ratas , Especificidad por Sustrato
19.
Chembiochem ; 15(15): 2205-10, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25182009

RESUMEN

Prenylation is a post-translational modification wherein an isoprenoid group is attached to a protein substrate by a protein prenyltransferase. Hundreds of peptide sequences are in vitro substrates for protein farnesyltransferase (FTase), but it remains unknown which of these sequences can successfully compete for in vivo prenylation. Translating in vitro studies to predict in vivo protein farnesylation requires determining the minimum reactivity needed for modification by FTase within the cell. Towards this goal, we developed a reporter protein series spanning several orders of magnitude in FTase reactivity as a calibrated sensor for endogenous FTase activity. Our approach provides a minimally invasive method to monitor changes in cellular FTase activity in response to environmental or genetic factors. Determining the reactivity "threshold" for in vivo prenylation will help define the prenylated proteome and identify prenylation-dependent pathways for therapeutic targeting.


Asunto(s)
Farnesiltransferasa/análisis , Farnesiltransferasa/metabolismo , Células Cultivadas , Activación Enzimática , Farnesiltransferasa/genética , Células HEK293 , Humanos , Prenilación de Proteína , Especificidad por Sustrato
20.
J Biol Chem ; 287(45): 38090-100, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22992747

RESUMEN

Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be "tuned" using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Dominio Catalítico/genética , Péptidos/metabolismo , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Ingeniería de Proteínas/métodos , Prenilación de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA