Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Biotechnol J ; 21(1): 136-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148792

RESUMEN

Detecting the simultaneous presence of a microRNA (miRNA) and a mRNA in a specific tissue can provide support for the prediction that the miRNA regulates the mRNA. Although two such methods have been developed for mammalian tissues, they have a low signal-noise ratio and/or poor resolution at the single-cell level. To overcome these drawbacks, we develop a method that uses sequence-specific miRNA-locked nucleic acid (LNA) and mRNA-LNA probes. Moreover, it augments the detection signal by rolling circle amplification, achieving a high signal-noise ratio at the single-cell level. Dot signals are counted for determining the expression levels of mRNA and miRNA molecules in specific cells. We show a high sequence specificity of our miRNA-LNA probe, revealing that it can discriminate single-base mismatches. Numerical quantification by our method is tested in transgenic rice lines with different gene expression levels. We conduct several applications. First, the spatial expression profiling of osa-miR156 and OsSPL12 in rice leaves reveals their specific expression in mesophyll cells. Second, studying rice and its mutant lines with our method reveals opposite expression patterns of miRNA and its target mRNA in tissues. Third, the dynamic expression profiles of ZmGRF8 and zma-miR396 during maize leaf development provide evidence that zma-miR396 regulates the preferential spatial expression of ZmGRF8 in bundle sheath cells. Finally, our method can be scaled up to simultaneously detect multiple miRNAs and mRNAs in a tissue. Thus, it is a sensitive and versatile technique for studying miRNA regulation of plant tissue development.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
Plant Cell Environ ; 46(8): 2507-2522, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37212208

RESUMEN

Field-grown rice (Oryza sativa L.), when exposed to various environmental stresses, produces high amounts of reactive oxygen species, such as H2 O2 . MicroRNAs (miRNAs) play crucial roles in plant stress responses. This study characterized the functions of H2 O2 -regulated miRNAs in rice. Small RNA deep sequencing revealed that miR156 levels decreased following H2 O2 treatment. Searches of the rice transcriptome and degradome databases indicated that OsSPL2 and OsTIFY11b are miR156-target genes. Interactions between miR156 and OsSPL2 and OsTIFY11b were confirmed using transient expression assays through agroinfiltration. In addition, the levels of OsSPL2 and OsTIFY11b transcripts were lower in transgenic rice plants overexpressing miR156 than in wild-type plants. The OsSPL2-GFP and OsTIFY11b-GFP proteins were localized to the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated interactions between OsSPL2 and OsTIFY11b. Furthermore, OsTIFY11b interacted with OsMYC2 to regulate the expression of OsRBBI3-3, which encodes a proteinase inhibitor. The results suggested that H2 O2 accumulation in rice suppresses the expression of miR156, and induces the expression of its target genes, OsSPL2 and OsTIFY11b, whose proteins interact in the nucleus to regulate the expression of OsRBBI3-3, which is involved in plant defense.


Asunto(s)
MicroARNs , Oryza , Oryza/genética , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Secuencia de Bases , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Biotechnol J ; 15(7): 850-864, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27998028

RESUMEN

A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , N-Acetilgalactosaminiltransferasas/genética , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Expresión Génica Ectópica/genética , Expresión Génica Ectópica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Mutación/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
4.
PLoS One ; 18(10): e0292400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812600

RESUMEN

The rice GA biosynthetic gene OsGA3ox1 has been proposed to regulate pollen development through the gametophytic manner, but cellular characterization of its mutant pollen is lacking. In this study, three heterozygotic biallelic variants, "-3/-19", "-3/-2" and "-3/-10", each containing one null and one 3bp-deletion allele, were obtained by the CRISPR/Cas9 technique for the functional study of OsGA3ox1. The three homozygotes, "-19/-19", "-2/-2" and "-10/-10", derived from heterozygotic variants, did not affect the development of most vegetative and floral organs but showed a significant reduction in seed-setting rate and in pollen viability. Anatomic characterizations of these mutated osga3ox1 pollens revealed defects in starch granule accumulation and pollen wall development. Additional molecular characterization suggests that abnormal pollen development in the osga3ox1 mutants might be linked to the regulation of transcription factors OsGAMYB, OsTDR and OsbHLH142 during late pollen development. In brief, the rice GA3ox1 is a crucial gene that modulates pollen starch granule accumulation and pollen wall development at the gametophytic phase.


Asunto(s)
Oryza , Proteínas de Plantas/metabolismo , Semillas , Polen/metabolismo , Almidón , Regulación de la Expresión Génica de las Plantas
5.
Colloids Surf B Biointerfaces ; 202: 111674, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33690062

RESUMEN

Although considerable efforts have been made to vary the alkyl chain length in the quaternary ammonium compounds (QACs) for optimizing the antibacterial activity, only few researchers have systematically investigated the combinatory effects of alkyl chain length and another acryl monomers with the different chemical configuration on the antibacterial activity of the modified substrate. In this study, by surface grafting of various copolymeric brushes, different modified cotton substrates were prepared by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization reaction for exploring the effects of alkyl chain length of QACs and the fluorine content on antibacterial and anti-microbial adhesion characteristics. The quaternized monomers used were prepared by quaternization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) with 1-bromooctane (DMAEMA + 8), and 1-bromopropane (DMAEMA + 3). The fluoro-containing monomer was 2,2,2-Trifluoroethyl methacrylate (TFEMA). Ethyl methacrylate (EMA) was also used for comparison. Results have shown that the optimal antibacterial and anti-microbial adhesion characteristics were noted on the substrates grafted with DMAEMA + 8 and TFEMA. This can be attributed to the enhanced degree of surface quaternization due to the hydrophobic interactions between the grafted TFEMA and DMAEMA + 8 chains, leading to an increase in antibacterial efficacy of modified cotton substrates.


Asunto(s)
Compuestos de Amonio , Flúor , Antibacterianos/farmacología , Metacrilatos , Polímeros , Compuestos de Amonio Cuaternario/farmacología
6.
Rice (N Y) ; 14(1): 70, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34322729

RESUMEN

BACKGROUND: GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2ß-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS: Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS: This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.

7.
Bot Stud ; 61(1): 10, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253516

RESUMEN

BACKGROUND: Phalaenopsis orchids are one of the most common potted orchids sold worldwide. Most Phalaenopsis cultivars have long inflorescences that cause shipping problems and increase handling costs. Miniaturization of Phalaenopsis orchids not only reduces overall production costs but also can expand the appeal of the orchids to a different group of consumers who prefer to keep flowers on desks or tabletops. Although some miniature Phalaenopsis plants can be obtained via hybridization or mutation, they are unpredictable and limited in variety. We therefore used the transgenic approach of overexpressing gibberellin 2-oxidase 6 (OsGA2ox6), a rice GA deactivation gene, to investigate its functional effect in miniaturizing Phalaenopsis and to create a stable miniaturization platform to facilitate a supply for the potential demands of the miniature flower market. RESULTS: A commercial moth orchid, Phalaenopsis Sogo Yukidian 'SPM313', was transformed with the plasmid vector Ubi:OsGA2ox6 and successfully overexpressed the OsGA2ox6 gene in planta. The transgenic lines displayed darker-green, shorter, and wider leaves, thicker roots and much shorter flower spikes (10 cm vs 33 cm) than the nontransgenic line with a normal flower size and blooming ability and are therefore an ideal miniaturized form of Phalaenopsis orchids. CONCLUSIONS: We demonstrated that the ectopic expression of OsGA2ox6 can miniaturize Phalaenopsis Sogo Yukidian 'SPM313' while preserving its blooming ability, providing an alternative, useful method for miniaturizing Phalaenopsis species. This miniaturization by a transgenic approach can be further expanded by using GA2ox genes from different plant species or different gene variants, thereby expanding the technical platform for miniaturizing Phalaenopsis species to meet the potential demands of the miniature Phalaenopsis flower market.

8.
J Biomater Sci Polym Ed ; 31(3): 310-323, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31718510

RESUMEN

Creating a surface with anti- or reduced fouling characteristics can lead to a reduction in nonspecific protein adsorption as well as the bacterial adhesion and platelet adhesion/activation that occur as follows. A zwitterionic polymer that consists of both cationic and anionic functionalities have been reported as an effective material to achieve these goals, likely resulted from the strongly-adsorbed hydration layer after being immersed in the physiological environment. In this investigation, a novel beta-thiopropionate-based zwitterionic monomer, 2-ammonio-3-((3-(2-hydroxy-3-(methacryloyloxy)propoxy)-3-oxopropyl)thio)-3-methylbutanoate (DPAMA), was synthesized through a facial process. And then the hydrophobic polypropylene was surface modified with this novel zwitterionic polymer through the surface-initiated atom transfer radical polymerization technique. Surface characterization analyses have been employed to investigate the modified surface properties in each reaction stage. In vitro protein adsorption, bacterial adhesion, and platelet compatibility evaluations have shown the polyDPAMA-modified polypropylene surface has significantly reduced fouling characteristics and good hemocompatibility. Henceforth, this novel zwitterionic polyDPAMA grafting PP and the associated grafting reaction scheme have great potential for future clinical applications.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Polipropilenos/farmacología , Propionatos/química , Adsorción , Adhesión Bacteriana/efectos de los fármacos , Técnicas de Química Sintética , Humanos , Adhesividad Plaquetaria/efectos de los fármacos , Polimerizacion , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA