Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 93(4): 655-667, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511844

RESUMEN

OBJECTIVE: Small-fiber neuropathy (SFN) is characterized by neuropathic pain due to degeneration of small-diameter nerves in the skin. Given that brain reorganization occurs following chronic neuropathic pain, this study investigated the structural and functional basis of pain-related brain changes after skin nerve degeneration. METHODS: Diffusion-weighted and resting-state functional MRI data were acquired from 53 pathologically confirmed SFN patients, and the structural and functional connectivity of the pain-related network was assessed using network-based statistic (NBS) analysis. RESULTS: Compared with age- and sex-matched controls, the SFN patients exhibited a robust and global reduction of functional connectivity, mainly across the limbic and somatosensory systems. Furthermore, lower functional connectivity was associated with skin nerve degeneration measured by reduced intraepidermal nerve fiber density and better therapeutic response to anti-neuralgia medications, particularly for the connectivity between the insula and the limbic areas including the anterior and middle cingulate cortices. Similar to the patterns of functional connectivity changes, the structural connectivity was robustly reduced among the limbic and somatosensory areas, and the cognition-integration areas including the inferior parietal lobule. There was shared reduction of structural and functional connectivity among the limbic, somatosensory, striatal, and cognition-integration systems: (1) between the middle cingulate cortex and inferior parietal lobule and (2) between the thalamus and putamen. These observations indicate the structural basis underlying altered functional connectivity in SFN. INTERPRETATION: Our findings provide imaging evidence linking structural and functional brain dysconnectivity to sensory deafferentation caused by peripheral nerve degeneration and therapeutic responses for neuropathic pain in SFN. ANN NEUROL 2023;93:655-667.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Imagen por Resonancia Magnética/métodos , Neuralgia/diagnóstico por imagen , Neuralgia/tratamiento farmacológico , Encéfalo , Giro del Cíngulo , Neuropatía de Fibras Pequeñas/tratamiento farmacológico , Degeneración Nerviosa
2.
Am J Hum Genet ; 106(4): 535-548, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243820

RESUMEN

The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect biosamples with consent from at least one million veterans. Presently, blood samples have been collected from over 800,000 enrolled participants. The size and diversity of the MVP cohort, as well as the availability of extensive VA electronic health records, make it a promising resource for precision medicine. MVP is conducting array-based genotyping to provide a genome-wide scan of the entire cohort, in parallel with whole-genome sequencing, methylation, and other 'omics assays. Here, we present the design and performance of the MVP 1.0 custom Axiom array, which was designed and developed as a single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality-control analysis was developed and conducted on an initial tranche of 485,856 individuals, leading to a high-quality dataset of 459,777 unique individuals. 668,418 genetic markers passed quality control and showed high-quality genotypes not only on common variants but also on rare variants. We confirmed that, with non-European individuals making up nearly 30%, MVP's substantial ancestral diversity surpasses that of other large biobanks. We also demonstrated the quality of the MVP dataset by replicating established genetic associations with height in European Americans and African Americans ancestries. This current dataset has been made available to approved MVP researchers for genome-wide association studies and other downstream analyses. Further data releases will be available for analysis as recruitment at the VA continues and the cohort expands both in size and diversity.


Asunto(s)
Etnicidad/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Medicina de Precisión/métodos , Control de Calidad , Veteranos , Secuenciación Completa del Genoma/métodos
3.
J Eur Acad Dermatol Venereol ; 37(2): 382-389, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36200415

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) inhibitors are selective and effective treatments for cancers with relevant mutations. Purpuric drug eruptions are an uncommon but clinically significant dermatological side effect related to EGFR inhibitor use that are associated with positive bacterial cultures and responsive to antibiotic treatment. However, the longitudinal temporal shifts in the skin microbiome that occur before and after antibiotic treatment of purpuric drug eruptions remain largely unknown. OBJECTIVES: To characterize temporal changes in the skin and mucosal microbiomes before and after antibiotic treatment of EGFR inhibitor-related purpuric drug eruptions. METHODS: Twelve patients who experienced EGFR inhibitor-related purpuric drug eruptions were recruited from a dermato-oncology clinic in Taiwan from May 2017 to April 2018. Swabs were obtained from skin lesions and the nasal mucosa before and after antibiotic treatment of purpuric drug eruptions. After the amplification and sequencing of bacterial 16S rRNA genes, the diversity and compositions of microbiomes sampled at different time points were compared. RESULTS: The alpha diversity (represented by the Shannon index) of the skin microbiome increased significantly in the recovered phase of purpuric drug eruptions compared with that of the active phase. By contrast, the nasal microbiome showed no significant change in alpha diversity. The relative abundance of Staphylococcus significantly decreased in samples from skin of the recovered phase, which was confirmed by analysis of compositions of microbiomes (ANCOM) and the ALDEx2 analysis packages in R. CONCLUSIONS: The cutaneous microbiome of purpuric drug eruptions showed a significant increase in alpha diversity and a decrease in the relative abundance of Staphylococcus following antibiotic treatment. These findings may help guide antimicrobial therapy of this EGFR inhibitor-related condition.


Asunto(s)
Erupciones por Medicamentos , Neoplasias , Púrpura , Humanos , ARN Ribosómico 16S , Receptores ErbB/genética , Erupciones por Medicamentos/patología , Neoplasias/tratamiento farmacológico , Antibacterianos/efectos adversos
4.
PLoS Genet ; 12(9): e1006262, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27588417

RESUMEN

To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations.


Asunto(s)
Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas del Grupo Polycomb/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Chaperonas de Histonas/biosíntesis , Chaperonas de Histonas/genética , Histonas/genética , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Mutación , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/biosíntesis , Factores de Transcripción/biosíntesis
5.
Proc Natl Acad Sci U S A ; 109(50): 20260-7, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22187459

RESUMEN

The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ∼50,000-70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ∼5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

6.
Proc Natl Acad Sci U S A ; 109(50): 20268-73, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23213217

RESUMEN

As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic profiles, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement.

7.
Ground Water ; 60(1): 64-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34490617

RESUMEN

About 14.5 months after the 2018 eruption and summit collapse of Kilauea Volcano, Hawai'i, liquid water started accumulating in the deepened summit crater, forming a lake that attained 51 m depth before rapidly boiling off on December 20, 2020, when an eruption from the crater wall poured lava into the lake. Modeling the growth of the crater lake at Kilauea summit is important for assessing the potential for explosive volcanism. Our current understanding of the past 2500 years of eruptive activity at Kilauea suggests a slight dominance of explosive behavior over effusive. The deepened summit crater and presence of the crater lake in 2019 raised renewed concerns about explosive activity. Groundwater models using hydraulic-property data from a nearby drillhole successfully forecast the timing and rate of lake filling. Here we compare the groundwater-model predictions with observational data through the demise of the crater lake, examine the implications for local water-table configuration, consider the potential role of evaporation and recharge (neglected in previous models), and briefly discuss the energetics of the rapid boil-off. This post audit of groundwater-flow models of Kilauea summit shows that simple models can sometimes be used effectively to simulate complex settings such as volcanoes.


Asunto(s)
Agua Subterránea , Lagos , Agua
8.
Diabetes Res Clin Pract ; 186: 109833, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35314258

RESUMEN

AIMS: To investigate alterations in structural brain networks due to chronic diabetic neuropathic pain. METHODS: The current study recruited 24 patients with painful diabetic neuropathy (PDN) to investigate the influences of chronic pain on the brain. Thirteen patients with painless diabetic neuropathy (PLDN) and 24 healthy adults were recruited as disease and healthy controls. White matter connectivity of the brain networks constructed by diffusion tractography was compared across groups using the Network-based statistic (NBS) method. Graph theoretical analysis was further applied to assess topological changes of the brain networks. RESULTS: The PDN patients had a significant reduction in white matter connectivity compared with PLDN and controls in the limbic and temporal regions, particularly the insula, hippocampus and parahippocampus, the amygdala, and the middle temporal gyrus. The PDN patients also exhibited an altered topology of the brain networks with reduced global efficiency and betweenness centrality. CONCLUSION: The current findings indicate that topological alterations of brain networks may serve as a biomarker for pain-induced maladaptive reorganization of the brain in PDN. Given the high prevalence of diabetes worldwide, novel insights from network sciences to investigate the central mechanisms of diabetic neuropathic pain are warranted.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Adulto , Encéfalo/diagnóstico por imagen , Neuropatías Diabéticas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Humanos , Imagen por Resonancia Magnética , Neuralgia/diagnóstico por imagen , Neuralgia/etiología
9.
J Clin Endocrinol Metab ; 107(3): e1167-e1180, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34665863

RESUMEN

CONTEXT: About one-third of diabetic patients suffer from neuropathic pain, which is poorly responsive to analgesic therapy and associated with greater autonomic dysfunction. Previous research on diabetic neuropathy mainly links pain and autonomic dysfunction to peripheral nerve degeneration resulting from systemic metabolic disturbances, but maladaptive plasticity in the central pain and autonomic systems following peripheral nerve injury has been relatively ignored. OBJECTIVE: This study aimed to investigate how the brain is affected in painful diabetic neuropathy (PDN), in terms of altered structural connectivity (SC) of the thalamus and hypothalamus that are key regions modulating nociceptive and autonomic responses. METHODS: We recruited 25 PDN and 13 painless (PLDN) diabetic neuropathy patients, and 27 healthy adults as controls. The SC of the thalamus and hypothalamus with limbic regions mediating nociceptive and autonomic responses was assessed using diffusion tractography. RESULTS: The PDN patients had significantly lower thalamic and hypothalamic SC of the right amygdala compared with the PLDN and control groups. In addition, lower thalamic SC of the insula was associated with more severe peripheral nerve degeneration, and lower hypothalamic SC of the anterior cingulate cortex was associated with greater autonomic dysfunction manifested by decreased heart rate variability. CONCLUSION: Our findings indicate that alterations in brain structural connectivity could be a form of maladaptive plasticity after peripheral nerve injury, and also demonstrate a pathophysiological association between disconnection of the limbic circuitry and pain and autonomic dysfunction in diabetes.


Asunto(s)
Neuropatías Diabéticas/fisiopatología , Hipotálamo/fisiopatología , Neuralgia/fisiopatología , Disautonomías Primarias/fisiopatología , Tálamo/fisiopatología , Adaptación Fisiológica , Adulto , Anciano , Sistema Nervioso Autónomo/fisiología , Conectoma , Imagen de Difusión Tensora , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/fisiología , Tálamo/diagnóstico por imagen
10.
Artículo en Inglés | MEDLINE | ID: mdl-34765010

RESUMEN

Depression is prevalent among one-third to two-thirds of acute and chronic stroke survivors. Despite the availability of pharmacotherapies and/or psychotherapies, depression persists, even for 5-10 years after stroke, reflecting limited treatment responses and/or adherence to this conventional care. Mind-body interventions are commonly used among adults to ameliorate depressive symptoms. Thus, the feasibility of Tai Chi, alongside conventional care, to manage poststroke depression was investigated using a single-group pre-post intervention design. Recruitment and retention, intervention adherence, safety, acceptability, and fidelity were assessed. Symptoms of depression, anxiety, and stress were assessed using standardized questionnaires, objective sleep was assessed via a research-grade triaxial accelerometer, and blood samples were taken to measure oxidative stress, inflammatory markers, and a neurotrophic growth factor using commercially available kits per manufacturer's protocol. Pre-post intervention changes were assessed using paired t-tests. We enrolled stroke survivors (N = 11, mean age = 69.7 ± 9.3) reporting depression symptoms. After the intervention, we observed significant reductions in symptoms of depression (-5.3 ± 5.9, p=0.01), anxiety (-2.2 ± 2.4, p=0.01), and stress (-4.6 ± 4.8, p=0.01), along with better sleep efficiency (+1.8 ± 1.8, p=0.01), less wakefulness after sleep onset (-9.3 ± 11.6, p=0.04), and less time awake (-9.3 ± 11.6, p=0.04). There was a 36% decrease in oxidative stress (p=0.02), though no significant changes in the other biomarkers were found (all p values >0.05). Tai Chi exercise is a feasible intervention that can be used alongside conventional care to manage poststroke depression, aid in reducing symptoms of anxiety and stress, and improve sleep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA