Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 292(5): 1934-1950, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27974459

RESUMEN

RNA degradation is crucial for regulating gene expression in all organisms. Like the decapping of eukaryotic mRNAs, the conversion of the 5'-terminal triphosphate of bacterial transcripts to a monophosphate can trigger RNA decay by exposing the transcript to attack by 5'-monophosphate-dependent ribonucleases. In both biological realms, this deprotection step is catalyzed by members of the Nudix hydrolase family. The genome of the gastric pathogen Helicobacter pylori, a Gram-negative epsilonproteobacterium, encodes two proteins resembling Nudix enzymes. Here we present evidence that one of them, HP1228 (renamed HpRppH), is an RNA pyrophosphohydrolase that triggers RNA degradation in H. pylori, whereas the other, HP0507, lacks such activity. In vitro, HpRppH converts RNA 5'-triphosphates and diphosphates to monophosphates. It requires at least two unpaired nucleotides at the 5' end of its substrates and prefers three or more but has only modest sequence preferences. The influence of HpRppH on RNA degradation in vivo was examined by using RNA-seq to search the H. pylori transcriptome for RNAs whose 5'-phosphorylation state and cellular concentration are governed by this enzyme. Analysis of cDNA libraries specific for transcripts bearing a 5'-triphosphate and/or monophosphate revealed at least 63 potential HpRppH targets. These included mRNAs and sRNAs, several of which were validated individually by half-life measurements and quantification of their 5'-terminal phosphorylation state in wild-type and mutant cells. These findings demonstrate an important role for RppH in post-transcriptional gene regulation in pathogenic Epsilonproteobacteria and suggest a possible basis for the phenotypes of H. pylori mutants lacking this enzyme.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Helicobacter pylori/metabolismo , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , ARN Bacteriano/genética
2.
J Biol Chem ; 290(15): 9478-86, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25657006

RESUMEN

Bacterial RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate by the RNA pyrophosphohydrolase RppH, an event that triggers rapid ribonucleolytic attack. Besides its role as the master regulator of 5'-end-dependent mRNA decay, RppH is important for the ability of pathogenic bacteria to invade host cells, yet little is known about how it chooses its targets. Here, we show that Escherichia coli RppH (EcRppH) requires at least two unpaired nucleotides at the RNA 5' end and prefers three or more such nucleotides. It can tolerate any nucleotide at the first three positions but has a modest preference for A at the 5' terminus and either a G or A at the second position. Mutational analysis has identified EcRppH residues crucial for substrate recognition or catalysis. The promiscuity of EcRppH differentiates it from its Bacillus subtilis counterpart, which has a strict RNA sequence requirement. EcRppH orthologs likely to share its relaxed sequence specificity are widespread in all classes of Proteobacteria, except Deltaproteobacteria, and in flowering plants. By contrast, the phylogenetic range of recognizable B. subtilis RppH orthologs appears to be restricted to the order Bacillales. These findings help to explain the selective influence of RppH on bacterial mRNA decay and show that RppH-dependent degradation has diversified significantly during the course of evolution.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , ARN Bacteriano/genética , Ácido Anhídrido Hidrolasas/clasificación , Ácido Anhídrido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Secuencia de Bases , Sitios de Unión/genética , Biocatálisis , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutación , Nucleótidos/genética , Nucleótidos/metabolismo , Filogenia , Estabilidad del ARN/genética , ARN Bacteriano/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 110(22): 8864-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23610425

RESUMEN

Bacterial RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate, creating a better substrate for subsequent ribonuclease digestion. For example, in Bacillus subtilis and related organisms, removal of the gamma and beta phosphates of primary transcripts by the RNA pyrophosphohydrolase RppH triggers rapid 5'-exonucleolytic degradation by RNase J. However, the basis for the selective targeting of a subset of cellular RNAs by this pathway has remained largely unknown. Here we report that purified B. subtilis RppH requires at least two unpaired nucleotides at the 5' end of its RNA substrates and prefers three or more. The second of these 5'-terminal nucleotides must be G, whereas a less strict preference for a purine is evident at the third position, and A is slightly favored over G at the first position. The same sequence requirements are observed for RppH-dependent mRNA degradation in B. subtilis cells. By contrast, a parallel pathway for 5'-end-dependent RNA degradation in that species appears to involve an alternative phosphate-removing enzyme that is relatively insensitive to sequence variation at the first three positions.


Asunto(s)
Bacillus subtilis/fisiología , Pirofosfatasas/metabolismo , Caperuzas de ARN/metabolismo , Estabilidad del ARN/fisiología , Bacillus subtilis/genética , Northern Blotting , Difosfatos/metabolismo , Electroforesis en Gel de Agar , Guanosina/metabolismo , Modelos Lineales , Oligodesoxirribonucleótidos/genética , Reacción en Cadena de la Polimerasa , Pirofosfatasas/genética , Caperuzas de ARN/genética , Ribonucleasas/metabolismo , Especificidad por Sustrato , Hidrolasas Nudix
4.
Mol Microbiol ; 86(5): 1167-82, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23043360

RESUMEN

Enterohaemorrhagic Escherichia coli harbours a pathogenicity island encoding a type 3 secretion system used to translocate effector proteins into the cytosol of intestinal epithelial cells and subvert their function. The structural proteins of the translocon are encoded in a major espADB mRNA processed from a precursor. The translocon mRNA should be highly susceptible to RNase E cleavage because of its AU-rich leader region and monophosphorylated 5'-terminus, yet it manages to avoid rapid degradation. Here, we report that the espADB leader region contains a strong Shine-Dalgarno element (SD2) and a translatable mini-ORF of six codons. Disruption of SD2 so as to weaken ribosome binding significantly reduces the concentration and stability of esp mRNA, whereas codon substitutions that impair translation of the mini-ORF have no such effect. These findings suggest that occupancy of SD2 by ribosomes, but not mini-ORF translation, helps to protect espADB mRNA from degradation, likely by hindering RNase E access to the AU-rich leader region.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Ectima Contagioso/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Elementos Ricos en Adenilato y Uridilato , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos/genética , Sitios de Unión , Codón/metabolismo , Ectima Contagioso/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/genética
5.
Cell Metab ; 29(6): 1334-1349.e10, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853214

RESUMEN

KRAS mutations are the earliest events found in approximately 90% of pancreatic ductal adenocarcinomas (PDACs). However, little is known as to why KRAS mutations preferentially occur in PDACs and what processes/factors generate these mutations. While abnormal carbohydrate metabolism is associated with a high risk of pancreatic cancer, it remains elusive whether a direct relationship between KRAS mutations and sugar metabolism exists. Here, we show that under high-glucose conditions, cellular O-GlcNAcylation is significantly elevated in pancreatic cells that exhibit lower phosphofructokinase (PFK) activity than other cell types. This post-translational modification specifically compromises the ribonucleotide reductase (RNR) activity, leading to deficiency in dNTP pools, genomic DNA alterations with KRAS mutations, and cellular transformation. These results establish a mechanistic link between a perturbed sugar metabolism and genomic instability that induces de novo oncogenic KRAS mutations preferentially in pancreatic cells.


Asunto(s)
Acetilglucosamina/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Enzimas/metabolismo , Glucosa/farmacología , Nucleótidos/metabolismo , Páncreas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Acetilación/efectos de los fármacos , Acetiltransferasas/metabolismo , Adulto , Anciano , Animales , Carcinoma Ductal Pancreático/inducido químicamente , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Daño del ADN/genética , Relación Dosis-Respuesta a Droga , Enzimas/genética , Femenino , Glucosa/efectos adversos , Células HEK293 , Humanos , Recién Nacido , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Páncreas/metabolismo , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adulto Joven
6.
J Virol ; 79(22): 13848-55, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16254320

RESUMEN

The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.


Asunto(s)
Nucleocápside/fisiología , ARN Viral/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Secuencia de Bases , Chlorocebus aethiops , Cartilla de ADN , ADN Complementario/genética , ADN Viral/genética , Genes Reporteros , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/aislamiento & purificación , Plásmidos , ARN Viral/química , Proteínas Recombinantes/aislamiento & purificación , Células Vero , Proteínas Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA