Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 40(12): e106412, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988249

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Pronóstico
2.
Mol Microbiol ; 75(2): 499-512, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20025670

RESUMEN

Dynamic oscillation of the Min system in Escherichia coli determines the placement of the division plane at the midcell. In addition to stimulating MinD ATPase activity, we report here that MinE can directly interact with the membrane and this interaction contributes to the proper MinDE localization and dynamics. The N-terminal domain of MinE is involved in direct contact between MinE and the membranes that may subsequently be stabilized by the C-terminal domain of MinE. In an in vitro system, MinE caused liposome deformation into membrane tubules, a property similar to that previously reported for MinD. We isolated a mutant MinE containing residue substitutions in R10, K11 and K12 that was fully capable of stimulating MinD ATPase activity, but was deficient in membrane binding. Importantly, this mutant was unable to support normal MinDE localization and oscillation, suggesting that direct MinE interaction with the membrane is critical for the dynamic behavior of the Min system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , División Celular , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Cinética , Liposomas/química , Liposomas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutación , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Soluciones , Electricidad Estática
3.
Science ; 372(6545): 935-941, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33927055

RESUMEN

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Bacterianas/química , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Retroalimentación Fisiológica , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/ultraestructura , Legionella pneumophila/enzimología , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Ratones , Mutación , Fosfatidilinositol 3-Quinasa/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolasas/metabolismo , Dominios Proteicos , Células RAW 264.7
4.
J Cell Biol ; 217(6): 2047-2058, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29563214

RESUMEN

The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) after ER Ca2+ depletion. STIM1 also interacts with EB1 and dynamically tracks microtubule (MT) plus ends. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with a synthetic construct approach, we found that EB1 binding constitutes a trapping mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. By trapping STIM1 molecules at dynamic contacts between the ER and MT plus ends, EB1 binding delayed STIM1 translocation to ER-PM junctions during ER Ca2+ depletion and prevented excess SOCE and ER Ca2+ overload. Our study suggests that STIM1-EB1 interaction shapes the kinetics and amplitude of local SOCE in cellular regions with growing MTs and contributes to spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Secuencia de Aminoácidos , Canales de Calcio , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Proteína ORAI1/metabolismo , Unión Proteica , Transporte de Proteínas , Molécula de Interacción Estromal 1/química
5.
Mol Biol Cell ; 28(23): 3171-3180, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28954864

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate crucial activities ranging from Ca2+ signaling to lipid metabolism. Spatial organization of ER-PM junctions may modulate the extent and location of these cellular activities. However, the morphology and distribution of ER-PM junctions are not well characterized. Using photoactivated localization microscopy, we reveal that the contact area of single ER-PM junctions is mainly oblong with the dimensions of ∼120 nm × âˆ¼80 nm in HeLa cells. Using total internal reflection fluorescence microscopy and structure illumination microscopy, we show that cortical actin contributes to spatial distribution and stability of ER-PM junctions. Further functional assays suggest that intact F-actin architecture is required for phosphatidylinositol 4,5-bisphosphate homeostasis mediated by Nir2 at ER-PM junctions. Together, our study provides quantitative information on spatial organization of ER-PM junctions that is in part regulated by F-actin. We envision that functions of ER-PM junctions can be differentially regulated through dynamic actin remodeling during cellular processes.


Asunto(s)
Actinas/metabolismo , Retículo Endoplásmico/metabolismo , Análisis Espacial , Citoesqueleto de Actina/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/fisiología , Células HeLa , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal
6.
Cell Rep ; 5(3): 813-25, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24183667

RESUMEN

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are highly conserved subcellular structures. Despite their importance in Ca(2+) signaling and lipid trafficking, the molecular mechanisms underlying the regulation and functions of ER-PM junctions remain unclear. By developing a genetically encoded marker that selectively monitors ER-PM junctions, we found that the connection between ER and PM was dynamically regulated by Ca(2+) signaling. Elevation of cytosolic Ca(2+) triggered translocation of E-Syt1 to ER-PM junctions to enhance ER-to-PM connection. This subsequently facilitated the recruitment of Nir2, a phosphatidylinositol transfer protein (PITP), to ER-PM junctions following receptor stimulation. Nir2 promoted the replenishment of PM phosphatidylinositol 4,5-bisphosphate (PIP2) after receptor-induced hydrolysis via its PITP activity. Disruption of the enhanced ER-to-PM connection resulted in reduced PM PIP2 replenishment and defective Ca(2+) signaling. Altogether, our results suggest a feedback mechanism that replenishes PM PIP2 during receptor-induced Ca(2+) signaling via the Ca(2+) effector E-Syt1 and the PITP Nir2 at ER-PM junctions.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Ojo/genética , Proteínas de la Membrana/metabolismo , Sinaptotagminas/genética , Proteínas de Unión al Calcio/metabolismo , Técnicas de Cultivo de Célula , Proteínas del Ojo/metabolismo , Células HeLa , Humanos , Células Jurkat , Proteínas de la Membrana/genética , Microscopía Electrónica , Transducción de Señal , Sinaptotagminas/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA