RESUMEN
Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.
Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Aprendizaje , Potenciales de Acción , Animales , Conducta Animal , Biomarcadores/metabolismo , Cuerpo Estriado/fisiopatología , Aprendizaje Discriminativo , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Interneuronas/patología , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiopatología , Parvalbúminas/metabolismo , Fotometría , Recompensa , Análisis y Desempeño de TareasRESUMEN
Triggering receptor expressed on myeloid cells 2 (TREM2) is strongly linked to Alzheimer's disease (AD) risk, but its functions are not fully understood. Here, we found that TREM2 specifically attenuated the activation of classical complement cascade via high-affinity binding to its initiator C1q. In the human AD brains, the formation of TREM2-C1q complexes was detected, and the increased density of the complexes was associated with lower deposition of C3 but higher amounts of synaptic proteins. In mice expressing mutant human tau, Trem2 haploinsufficiency increased complement-mediated microglial engulfment of synapses and accelerated synaptic loss. Administration of a 41-amino-acid TREM2 peptide, which we identified to be responsible for TREM2 binding to C1q, rescued synaptic impairments in AD mouse models. We thus demonstrate a critical role for microglial TREM2 in restricting complement-mediated synaptic elimination during neurodegeneration, providing mechanistic insights into the protective roles of TREM2 against AD pathogenesis.
Asunto(s)
Enfermedad de Alzheimer , Complemento C1q , Ratones , Animales , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Encéfalo/metabolismo , Sinapsis/metabolismo , Activación de Complemento , Microglía/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismoRESUMEN
Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, "rational" decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict. VIDEO ABSTRACT.
Asunto(s)
Toma de Decisiones , Corteza Prefrontal/fisiopatología , Estrés Fisiológico , Animales , Ganglios Basales/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Optogenética , Ratas , Ratas Long-EvansRESUMEN
In the version of this article initially published, in the legend to Fig. 1b, the description of the frequency of TH17-IL-10+ clones was incomplete for the first group; this should read as follows: "...13 experiments with clones isolated from CCR6+CCR4+CXCR3- T cells...". Also, the label along the vertical axis of the bottom right plot in Figure 5b was incomplete; the correct label is 'IFN-γ+ cells (%)'. Finally, in the first sentence of the final paragraph of the final Results subsection, the description of the regions analyzed was incorrect; that sentence should begin: "DNA motif-enrichment analysis of the subset-specific H3K27ac-positive regions...". The errors have been corrected in the HTML and PDF versions of the article.
RESUMEN
Different types of effector and memory T lymphocytes are induced and maintained in protective or pathological immune responses. Here we characterized two human CD4+ TH17 helper cell subsets that, in the recently activated state, could be distinguished on the basis of their expression of the anti-inflammatory cytokine IL-10. IL-10+ TH17 cells upregulated a variety of genes encoding immunoregulatory molecules, as well as genes whose expression is characteristic of tissue-resident T cells. In contrast, IL-10- TH17 cells maintained a pro-inflammatory gene-expression profile and upregulated the expression of homing receptors that guide recirculation from tissues to blood. Expression of the transcription factor c-MAF was selectively upregulated in IL-10+ TH17 cells, and it was bound to a large set of enhancer-like regions and modulated the immunoregulatory and tissue-residency program. Our results identify c-MAF as a relevant factor that drives two highly divergent post-activation fates of human TH17 cells and provide a framework with which to investigate the role of these cells in physiology and immunopathology.
Asunto(s)
Interleucina-10/inmunología , Proteínas Proto-Oncogénicas c-maf/inmunología , Subgrupos de Linfocitos T/inmunología , Células Th17/inmunología , Quimiotaxis de Leucocito/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/inmunología , Interleucina-10/biosíntesis , Proteínas Proto-Oncogénicas c-maf/metabolismo , Subgrupos de Linfocitos T/metabolismo , Células Th17/metabolismoRESUMEN
In a remarkable new study, Su et al. have shown that a specific subpopulation of CD8+ T cells, attracted to brain lesion sites and expanded via microglia-CD8+ T cell CXCL16-CXCR6 intercellular communication, can curb Alzheimer's disease (AD)-related pathology in mouse models.
Asunto(s)
Enfermedad de Alzheimer , Linfocitos T CD8-positivos , Ratones , Animales , Linfocitos T CD8-positivos/patología , Encéfalo/patología , Modelos Animales de Enfermedad , MicroglíaRESUMEN
Mouse Ly49+CD8+ regulatory T cells (Tregs) can subdue autoreactive CD4+ T cells to suppress autoimmunity. Recently, Li et al. demonstrated that killer-cell immunoglobulin-like receptor (KIR)+CD8+ T cells are the human equivalent of Ly49+CD8+ regulatory T cells and kill pathogenic CD4+ T cells, which can be increased in certain human autoimmune diseases and viral infections.
Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Animales , Linfocitos T CD8-positivos , Humanos , Ratones , Receptores KIR , Linfocitos T ReguladoresRESUMEN
Surface area of the human cerebral cortex expands extremely dynamically and regionally heterogeneously from the third trimester of pregnancy to 2 y of age, reflecting the spatial heterogeneity of the underlying microstructural and functional development of the cerebral cortex. However, little is known about the developmental patterns and regionalization of cortical surface area during this critical stage, due to the lack of high-quality imaging data and accurate computational tools for pediatric brain MRI data. To fill this critical knowledge gap, by leveraging 1,037 high-quality MRI scans with the age between 29 post-menstrual weeks and 24 mo from 735 pediatric subjects in two complementary datasets, i.e., the Baby Connectome Project (BCP) and the developing Human Connectome Project (dHCP), and state-of-the-art dedicated image-processing tools, we unprecedentedly parcellate the cerebral cortex into a set of distinct subdivisions purely according to the developmental patterns of the cortical surface. Our discovered developmentally distinct subdivisions correspond well to structurally and functionally meaningful regions and reveal spatially contiguous, hierarchical, and bilaterally symmetric patterns of early cortical surface expansion. We also show that high-order association subdivisions, where cortical folds emerge later during prenatal stages, undergo more dramatic cortical surface expansion during infancy, compared with the central regions, especially the sensorimotor and insula cortices, thus forming a distinct central-pole division in early cortical surface expansion. These results provide an important reference for exploring and understanding dynamic early brain development in health and disease.
Asunto(s)
Corteza Cerebral , Conectoma , Corteza Cerebral/crecimiento & desarrollo , Conectoma/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Lactante , Recién Nacido , Imagen por Resonancia Magnética/métodosRESUMEN
Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.
Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismoRESUMEN
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Asunto(s)
Hongos , Terpenos , Terpenos/metabolismo , Terpenos/química , Hongos/metabolismo , Hongos/química , Estructura Molecular , Productos Biológicos/metabolismo , Productos Biológicos/química , Sistema Enzimático del Citocromo P-450/metabolismoRESUMEN
The environment has long been considered a crucial factor influencing the onset and progression of pulmonary diseases. Environmental therapy is also a practical treatment approach for many conditions. While research has explored the effects of factors like air pressure and oxygen concentration on pulmonary arterial hypertension (PAH), the impact of air humidity on PAH has not been investigated. In this study, we examined the role of different air humidity levels in a mouse model of PAH by controlling relative humidity. We induced PAH in mice using 10 % hypoxia, which led to significant thickening of the pulmonary vasculature, elevated right ventricular systolic pressure, and an increased right ventricular hypertrophy index (RVHI). However, when exposed to an environment with 80-95 % relative humidity, there was a marked reduction in the extent of pulmonary vascular remodeling, decreased vascular thickening, and lower RVHI, effectively preserving right heart function. Notably, changes in the Bmpr2/Tgf-ß signaling pathway were significant and may play a pivotal role in this protective effect. In summary, our findings indicate that high relative humidity confers a protective effect on hypoxia-induced PAH in mice, providing novel insights into potential treatments for PAH.
Asunto(s)
Humedad , Hipoxia , Ratones Endogámicos C57BL , Animales , Hipoxia/complicaciones , Hipoxia/fisiopatología , Ratones , Masculino , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Remodelación Vascular , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Modelos Animales de Enfermedad , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/etiologíaRESUMEN
BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignancy with a favorable prognosis if detected early. However, there is a lack of accurate and reliable early detection tests for UCEC. This study aims to develop a precise and non-invasive diagnostic method for UCEC using circulating cell-free DNA (cfDNA) fragmentomics. METHODS: Peripheral blood samples were collected from all participants, and cfDNA was extracted for analysis. Low-coverage whole-genome sequencing was performed to obtain cfDNA fragmentomics data. A robust machine learning model was developed using these features to differentiate between UCEC and healthy conditions. RESULTS: The cfDNA fragmentomics-based model showed high predictive power for UCEC detection in training (n = 133; AUC 0.991) and validation cohorts (n = 89; AUC 0.994). The model manifested a specificity of 95.5% and a sensitivity of 98.5% in the training cohort, and a specificity of 95.5% and a sensitivity of 97.8% in the validation cohort. Physiological variables and preanalytical procedures had no significant impact on the classifier's outcomes. In terms of clinical benefit, our model would identify 99% of Chinese UCEC patients at stage I, compared to 21% under standard care, potentially raising the 5-year survival rate from 84 to 95%. CONCLUSION: This study presents a novel approach for the early detection of UCEC using cfDNA fragmentomics and machine learning showing promising sensitivity and specificity. Using this model in clinical practice could significantly improve UCEC management and control, enabling early intervention and better patient outcomes. Further optimization and validation of this approach are warranted to establish its clinical utility.
Asunto(s)
Ácidos Nucleicos Libres de Células , Detección Precoz del Cáncer , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/sangre , Neoplasias Endometriales/genética , Persona de Mediana Edad , Ácidos Nucleicos Libres de Células/sangre , Detección Precoz del Cáncer/métodos , Anciano , Aprendizaje Automático , Adulto , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Sensibilidad y EspecificidadRESUMEN
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Asunto(s)
Antiarrítmicos , Arritmias Cardíacas , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Humanos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Antiarrítmicos/uso terapéutico , Antiarrítmicos/efectos adversos , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/metabolismo , Resultado del Tratamiento , Frecuencia Cardíaca/efectos de los fármacos , Autofagia/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Potenciales de Acción/efectos de los fármacos , Sodio/metabolismoRESUMEN
Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.
Asunto(s)
Acetona , Quinasas MAP Reguladas por Señal Extracelular , Prurito , Receptores Histamínicos H4 , Médula Espinal , Animales , Prurito/inducido químicamente , Prurito/metabolismo , Receptores Histamínicos H4/metabolismo , Ratones , Médula Espinal/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Acetona/farmacología , Agua , Éter , Modelos Animales de Enfermedad , Fosforilación , Indoles/farmacología , Butadienos/farmacología , Piperazinas/farmacología , Nitrilos/farmacología , Piel/metabolismo , Enfermedad Crónica , Metilhistaminas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratones Endogámicos C57BLRESUMEN
Pam3CSK4 activates Toll-like receptors 2 and 1 (TLR1/2), which recognize mainly molecules from gram-positive pathogens. The effect of Pam3CSK4 on various cytokine and chemokine expression in cultured human uveal melanocytes (UM) has not been studied systematically. The purpose of this study was to investigate the mechanistic expressions of seven cytokines and chemokines of interleukin- (IL-) 6, IL-10, MCP-1 (CCL-2), CXCL-1 (GRO-α), CXCL-8 (IL-8), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) in UM. These cytokines are reported to be increased in intraocular fluids or tissues of the patients with endophthalmitis and non-infectious uveitis, as well as in various experimental animal uveitic models in the literature. Flow cytometry was used to measure the effects of Pam3CSK4 on the expression of TLR1/2 in UM. ELISA and Real-time PCR analysis were used to estimate the ability of Pam3CSK4 to elevate these cytokines and chemokines levels in conditioned media and cell lysates of UM, respectively. Flow cytometry measured and compared the phosphorylated MAPK pathway and activated NF-κB signals pathway in UM, treated with and without Pam3CSK4. ELISA analysis tested the effect of various signal inhibitors (ERK1/2, JNK1/2, p38 and NF-κB) on Pam3CSK4-induced IL-6 levels in cultured UM. The role of TLR2 in Pam3CSK4-induced acute anterior uveitis in experimental mouse model was tested in TLR2 knockout (TLR2 KO) mice and their wild-type C57Bl/6 controls. Pam3CSK4 increased the expression of TLR1/2 proteins in cultured UM. Pam3CSK4 significantly elevated the IL-6, MCP-1, CXCL-1, CXCL-8 protein, and mRNA levels in cultured UM, but not IL-10, TNF-α, or IFN-γ. Pam3CSK4 activated NF-κB, ERK, JNK, and p38 expression. Pam3CSK4-induced expression of IL-6 was decreased by NF-κB, ERK, INK, and p38 inhibitors; especially the NF-κB inhibitor, which can completely block the IL-6 stimulation. Intravitreal injection of Pam3CSK4 induced acute anterior uveitis in C57Bl/6 mice, this effect was significantly reduced in TLR2 KO mice. TLR1/2 plays an important role against invading pathogens, especially gram-positive bacteria; but an excessive reaction to molecules from gram-positive bacteria may promote non-infectious uveitis. UM can produce IL-6, MCP-1, CXCL-1, and CXCL-8, and are one of the target cells of TNF-α and IFN-γ. TLR-2 inhibitors might have a beneficial effect in the treatment of certain types of uveitis and other ocular inflammatory-related diseases and warrant further investigation.
Asunto(s)
Uveítis Anterior , Uveítis , Humanos , Animales , Ratones , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 1/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Melanocitos/metabolismo , Quimiocinas/metabolismo , Uveítis/metabolismo , Uveítis Anterior/metabolismoRESUMEN
The cyclisation mechanism of the fungal fusicoccane (FC)-type diterpene synthase (DTS) TadA was investigated by extensive isotopic labelling experiments, and the pH-dependency of the product selectivity of this enzyme was explored. These studies provide new insights into the cyclisation mechanisms of FC-type DTSs.
Asunto(s)
Transferasas Alquil y Aril , Diterpenos , Diterpenos/química , Diterpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Ciclización , Concentración de Iones de Hidrógeno , Estructura MolecularRESUMEN
ortho-Quinone methides (o-QMs) are a class of highly reactive intermediates that serve as important nonisolable building blocks (NBBs) in organic synthesis and small-molecule library construction. Because of their instability and nonisolability, most reported o-QMs are generated through in situ chemical synthesis, and only a few natural o-QMs have been reported due to the lack of directed discovery strategies. Herein, a new natural o-QM precursor (trichophenol A, 2) was identified from the fungal strain of Trichoderma sp. AT0167 through genome mining, which was generated by trilA (nonreducing polyketide synthase) and trilB (2-oxoglutarate dependent dioxygenase). Combinatorial biosynthesis via two other known NRPKS genes with trilA and trilB was performed, leading to the generation of five new trichophenol o-QM oligomers (trichophenols D-H, 5-9). The strategy combining genome mining with combinatorial biosynthesis not only targetedly uncovered a new natural o-QM precursor but also produced various new molecules through oligomerization of the new o-QM and its designated o-QM acceptors without chemical synthesis and isolation of intermediates, which was named NBB genome mining-combinatorial biosynthesis strategy for o-QM molecule library construction. This study provides a new strategy for the targeted discovery of natural o-QMs and small-molecule library construction with natural o-QMs.
Asunto(s)
Indolquinonas , Indolquinonas/química , Estructura Molecular , Sintasas Poliquetidas/metabolismoRESUMEN
Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.
Asunto(s)
Polienos , Polienos/química , Polienos/farmacología , Estructura Molecular , Talaromyces/química , Antivirales/farmacología , Antivirales/química , Virus Sincitiales Respiratorios/efectos de los fármacos , HumanosRESUMEN
Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5-8-5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2-5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5-8-5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Diterpenos , Oxidación-Reducción , Diterpenos/química , Diterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Estructura MolecularRESUMEN
BACKGROUND: The goal was to explore the aberrant human epididymal protein 4 (HE4) in chronic heart failure (CHF) patients and its association with C-reactive protein (CRP), uric acid (UA), and homocysteine (HCY). METHODS: Analysis of serum HE4 and its relevance with associated indexes in 117 CHF patients was implemented. RESULTS: Serum HE4 in CHF patients was linked with the disease's severity and CRP, UA, and HCY. An assessment value was provided for it (p < 0.05). CONCLUSIONS: HE4 is aberrant in CHF patients' serum and is associated with the disease's severity and CRP, UA, and HCY's indexes.