Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 18(5)2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441340

RESUMEN

A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite) labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5'-primer and 3'-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 104 to 107 cfu/mL (R² = 0.9834). Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5.


Asunto(s)
Aptámeros de Nucleótidos/química , Bifidobacterium bifidum/aislamiento & purificación , Bioensayo/métodos , Aptámeros de Nucleótidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bifidobacterium bifidum/química , Bifidobacterium bifidum/metabolismo , Sitios de Unión , Colorimetría/métodos , Fluoresceína/química , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Técnica SELEX de Producción de Aptámeros
2.
Int J Mol Sci ; 18(2)2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28230723

RESUMEN

Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains' growth rates, adhesive capacity and effects on the gut microbiome and microenvironment.


Asunto(s)
Antidiarreicos/efectos adversos , Bifidobacterium adolescentis/fisiología , Estreñimiento/etiología , Loperamida/efectos adversos , Probióticos , Animales , Adhesión Bacteriana , Bifidobacterium adolescentis/efectos de los fármacos , Biomarcadores , Estreñimiento/diagnóstico , Estreñimiento/terapia , Defecación , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/química , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Jugo Gástrico , Células HT29 , Humanos , Melena , Ratones , Microbiota , Probióticos/administración & dosificación
3.
Food Chem X ; 23: 101575, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022787

RESUMEN

This study aimed to investigate the impact of different strains of Lactiplantibacillus plantarum on malolactic fermentation (MLF), antioxidant activity, and aroma of ciders. A commercial strain of Saccharomyces cerevisiae and six indigenous L. plantarum strains were co-inoculated into apple juice to induce simultaneous alcoholic fermentation (AF) and MLF. The findings indicated that despite belonging to the same species, the different L. plantarum strains significantly differed (p < 0.05) in terms of antioxidant activity and aroma compounds in the ciders. MLF induced by L. plantarum resulted in the substantial consumption of malic acid and increased levels of lactic acid in the ciders, with strain-specific effects observed, particularly with L. plantarum SCFF284. In addition, ciders produced from mixed fermentations exhibited higher levels of antioxidant activity than those from pure S. cerevisiae fermentation (p < 0.05), especially for LAM284. Furthermore, ciders produced from mixed fermentations exhibited higher levels of aroma compounds, such as ethyl acetate and isoamyl alcohol, and also received higher sensory scores compared to ciders produced through pure S. cerevisiae fermentation (p < 0.05). These results highlight the effectiveness of MLF induced by L. plantarum in enhancing the antioxidant activity and aroma profile of ciders.

4.
Foods ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766182

RESUMEN

This study explored the effect of the combination of Saccharomyces yeast, non-Saccharomyces yeast (Pichia kudriavzevii), and Lactiplantibacillus plantarum during cider fermentation on physicochemical properties, antioxidant activities, flavor and aroma compounds, as well as sensory qualities. Ciders fermented with the triple mixed-cultures of these three species showed lower acid and alcohol content than those fermented with the single-culture of S. cerevisiae. The antioxidant activities were enhanced by the triple mixed-culture fermentation, giving a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and total antioxidant capacity; specifically, the SPL5 cider showed the highest DPPH radical scavenging rate (77.28%), while the SPL2 gave the highest total antioxidant capacity (39.57 mmol/L). Additionally, the triple mixed-culture fermentation resulted in improved flavor and aroma with a lower acidity (L-malic acid) and higher aroma compounds (Esters), when compared with the single-culture fermented ciders (Saccharomyces cerevisiae); more specifically, the SPL4 cider resulted in the highest total flavor and aroma compounds. In addition, sensory evaluation demonstrated that ciders produced using the triple mixed-cultures gained higher scores than those fermented using the single-culture of S. cerevisiae, giving better floral aroma, fruity flavor, and overall acceptability. Therefore, our results indicated that the triple mixed-cultures (S. cerevisiae, P. kudriavzevii, and L. plantarum) were found to make up some enological shortages of the single S. cerevisiae fermented cider. This study is believed to provide a potential strategy to enhance cider quality and further give a reference for new industrial development protocols for cider fermentation that have better sensory qualities with higher antioxidant properties.

5.
Biophys Rep ; 6(6): 290-298, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34337142

RESUMEN

Cancer immunotherapy has made recent breakthrough, including immune checkpoint blockade (ICB) that inhibits immunosuppressive checkpoints such as programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). However, most cancer patients do not durably respond to ICB. To predict ICB responses for patient stratification, conventional immunostaining has been used to analyze the PD-L1 expression level on biopsied tumor tissues but has limitations of invasiveness and tumor heterogeneity. Recently, PD-L1 levels on tumor cell exosomes showed the potential to predict ICB response. Here, we developed a non-invasive, sensitive, and fast assay, termed as exosome-hybridization chain reaction (ExoHCR), to analyze tumor cell exosomal PD-L1 levels. First, using αCD63-conjugated magnetic beads, we isolated exosomes from B16F10 melanoma and CT26 colorectal cancer cells that were immunostimulated to generate PD-L1-positive exosomes. Exosomes were then incubated with a conjugate of PD-L1 antibody with an HCR trigger DNA (T), in which one αPD-L1-T conjugate carried multiple copies of T. Next, a pair of metastable fluorophore-labeled hairpin DNA (H1 and H2) were added, allowing T on αPD-L1-T to initiate HCR in situ on bead-conjugated exosome surfaces. By flow cytometric analysis of the resulting beads, relative to αPD-L1-fluorophore conjugates, ExoHCR amplified the fluorescence signal intensities for exosome detection by 3-7 times in B16F10 cells and CT26 cells. Moreover, we validated the biostability of ExoHCR in culture medium supplemented with 50% FBS. These results suggest the potential of ExoHCR for non-invasive, sensitive, and fast PD-L1 exosomal profiling in patient stratification of cancer immunotherapy.

6.
Genes (Basel) ; 8(11)2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160815

RESUMEN

The next-generation high-throughput sequencing techniques have introduced a new way to assess the gut's microbial diversity on the basis of 16S rRNA gene-based microbiota analysis. However, the precise appraisal of the biodiversity of Bifidobacterium species within the gut remains a challenging task because of the limited resolving power of the 16S rRNA gene in different species. The groEL gene, a protein-coding gene, evolves quickly and thus is useful for differentiating bifidobacteria. Here, we designed a Bifidobacterium-specific primer pair which targets a hypervariable sequence region within the groEL gene that is suitable for precise taxonomic identification and detection of all recognized species of the genus Bifidobacterium so far. The results showed that the novel designed primer set can specifically differentiate Bifidobacterium species from non-bifidobacteria, and as low as 104 cells of Bifidobacterium species can be detected using the novel designed primer set on the basis of Illumina Miseq high-throughput sequencing. We also developed a novel protocol to assess the diversity of Bifidobacterium species in both human and rat feces through high-throughput sequencing technologies using groEL gene as a discriminative marker.

7.
Food Funct ; 8(10): 3587-3600, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28884754

RESUMEN

Constipation is one of the most common gastrointestinal complaints worldwide. The aim of this study was to determine whether edible bifidobacteria (Bifidobacterium longum, B. infantis, B. animalis, B. bifidum, B. adolescentis or B. breve) exhibit interspecies differences in alleviating constipation induced by loperamide in BALB/c mice and to analyse the main reasons for the interspecies differences. BALB/c mice were given bifidobacteria by gavage once per day for 8 days. The primary outcome measures, which included related constipation indicators, and the secondary outcome measures, which included changes in the concentration of short-chain fatty acids in faeces and changes in the faecal flora, were used to evaluate the therapeutic effects of the edible bifidobacteria on constipation. The findings show that the six species of Bifidobacterium differed in their ability to relieve constipation. B. longum, B. infantis and B. bifidum were the most effective in relieving constipation, B. adolescentis and B. breve were partially effective and B. animalis was not effective. Furthermore, edible Bifidobacterium treated constipation by increasing the abundance of Lactobacillus and decreasing the abundance of Alistipes, Odoribacter and Clostridium. Higher concentrations of short-chain fatty acids were found in the faecal samples from the edible Bifidobacterium treatment groups. Meanwhile, an increased concentration of acetic acid could alleviate constipation. In conclusion, edible bifidobacteria exhibit interspecies differences in the alleviation of constipation. Meanwhile, bifidobacteria improved constipation symptoms by increasing the concentration of acetic acid and the relative abundance of Lactobacillus and reducing the content of Alistipes, Odoribacter and Clostridium.


Asunto(s)
Bifidobacterium/metabolismo , Estreñimiento/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad de la Especie
8.
Food Funct ; 8(5): 1966-1978, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28475191

RESUMEN

The aim of this study was to evaluate the effects of three different kinds of oligosaccharides (a fructo-oligosaccharide (FOS) formulation consisting of 95% FOS (FOS95); a galacto-oligosaccharide (GOS) formulation consisting of 90% GOS (GOS90) and an isomalto-oligosaccharide (IMO) formulation consisting of 90% IMO (IMO90)) at dosages of 0.8, 4 g per d per kg bw and 8 g per d per kg bw on the composition and activity of the microbiota in the gut of mice with constipation induced by loperamide. Oligosaccharides were intragastrically administered to specific pathogen-free BALB/c mice once per day for 17 days. Feces were collected during a feeding trial and subjected to 16S rDNA amplicon analysis. Constipation indices, changes in gut microbiota and metabolic activity were measured to evaluate the effects of the oligosaccharides. The results show that oligosaccharides treated constipation by increasing both the water content of the feces and the small intestinal transit rate. The dosage required to treat constipation was different for different oligosaccharides. High-dose GOS90 was the most effective in relieving constipation, followed by medium-dose FOS95 and IMO90. The fecal samples were investigated after the oligosaccharide treatment. All three oligosaccharides increased the ratio of acetic acid and decreased the ratio of propionic and butyric acids in the feces. The increase in the ratio of acetic acid and the concentration of butyric acid were found to have relatively larger effects on constipation. After treatment with oligosaccharides, the gut microbiotas of the mice were dominated by Firmicutes, Bacteroidetes and Actinobacteria. At the genus level, oligosaccharide treatment increased the levels of Lactobacillus and Bifidobacterium and decreased the levels of Odoribacter, Alistipes and Bacteroides. In conclusion, our results demonstrate that oligosaccharides administered as a dietary supplement increase the water content of feces, reduce intestinal transit time, modulate the composition of the gut microbiota and increase the concentration of short-chain fatty acids in the feces of mice with constipation.


Asunto(s)
Bacterias/metabolismo , Estreñimiento/tratamiento farmacológico , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/administración & dosificación , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estreñimiento/microbiología , Heces/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA