Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7964): 374-382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225988

RESUMEN

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Asunto(s)
Vesículas Extracelulares , Ácidos Grasos , Hígado Graso , Hígado , Neoplasias Pancreáticas , Animales , Ratones , Sistema Enzimático del Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundario , Humanos , Inflamación/metabolismo , Ácido Palmítico/metabolismo , Macrófagos del Hígado , Fosforilación Oxidativa , Proteínas rab27 de Unión a GTP/deficiencia
2.
Bioinformatics ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970377

RESUMEN

SUMMARY: Computational cell-type deconvolution is an important analytic technique for modeling the compositional heterogeneity of bulk gene expression data. A conceptually new Bayesian approach to this problem, BayesPrism, has recently been proposed and has subsequently been shown to be superior in accuracy and robustness against model misspecifications by independent studies; however, given that BayesPrism relies on Gibbs sampling, it is orders of magnitude more computationally expensive than standard approaches. Here, we introduce the InstaPrism package which re-implements BayesPrism in a derandomized framework by replacing the time-consuming Gibbs sampling step with a fixed-point algorithm. We demonstrate that the new algorithm is effectively equivalent to BayesPrism while providing a considerable speed and memory advantage. Furthermore, the InstaPrism package is equipped with a precompiled, curated set of references tailored for a variety of cancer types, streamlining the deconvolution process. AVAILABILITY AND IMPLEMENTATION: The package InstaPrism is freely available at: https://github.com/humengying0907/InstaPrism. The source code and evaluation pipeline used in this paper can be found at: https://github.com/humengying0907/InstaPrismSourceCode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Semin Cancer Biol ; 93: 70-82, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178822

RESUMEN

Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular , Microambiente Tumoral
4.
Opt Express ; 32(12): 21497-21505, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859502

RESUMEN

Tamm plasmon polaritons (TPPs), localized near the boundary of a dielectric Bragg reflector (DBR) and a thin metal film, have attracted much attention for the lower ohm loss and flexible excitation. However, the radiation loss resulting from the direct coupling to the surroundings hinders their applications. Here, we propose and experimentally demonstrate a new type of hybrid plasmonic quasi-bound state in the continuum (BIC) in a Tamm-surface plasmon polariton system to suppress the radiation loss. Leveraging the scattering of the periodic metal array, the TPP interacts with the surface plasmon polariton (SPP) mode and form a Friedrich-Wintgen type quasi-BIC state that originated from the interference of two surface waves with different natures. Through angle resolved reflectance spectrum measurement, the hybrid plasmonic quasi-BIC was observed in the experiment. Our work proposes a new method to design a high Q mode in plasmonic systems, and thus holds promise for applications in the field of light matter interactions.

5.
Mol Ther ; 31(1): 119-133, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36146933

RESUMEN

The local microenvironment where tumors develop can shape cancer progression and therapeutic outcome. Emerging evidence demonstrate that the efficacy of immune-checkpoint blockade (ICB) is undermined by fibrotic tumor microenvironment (TME). The majority of hepatocellular carcinoma (HCC) develops in liver fibrosis, in which the stromal and immune components may form a barricade against immunotherapy. Here, we report that nanodelivery of a programmed death-ligand 1 (PD-L1) trap gene exerts superior efficacy in treating fibrosis-associated HCC when compared with the conventional monoclonal antibody (mAb). In two fibrosis-associated HCC models induced by carbon tetrachloride and a high-fat, high-carbohydrate diet, the PD-L1 trap induced significantly larger tumor regression than mAb with no evidence of toxicity. Mechanistic studies revealed that PD-L1 trap, but not mAb, consistently reduced the M2 macrophage proportion in the fibrotic liver microenvironment and promoted cytotoxic interferon gamma (IFNγ)+tumor necrosis factor α (TNF-α)+CD8+T cell infiltration to the tumor. Moreover, PD-L1 trap treatment was associated with decreased tumor-infiltrating polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) accumulation, resulting in an inflamed TME with a high cytotoxic CD8+T cell/PMN-MDSC ratio conductive to anti-tumor immune response. Single-cell RNA sequencing analysis of two clinical cohorts demonstrated preferential PD-L1 expression in M2 macrophages in the fibrotic liver, thus supporting the translational potential of nano-PD-L1 trap for fibrotic HCC treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Cirrosis Hepática/etiología , Cirrosis Hepática/tratamiento farmacológico , Microambiente Tumoral
6.
Phys Rev Lett ; 131(20): 207201, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039470

RESUMEN

Recent studies of non-Hermitian periodic lattices unveiled the non-Hermitian skin effect (NHSE), in which the bulk modes under the periodic boundary conditions (PBC) become skin modes under open boundary conditions. The NHSE is a topological effect owing to the nontrivial spectral winding, and such spectral behaviors appear naturally in nonreciprocal systems. Hence prevailing approaches rely on nonreciprocity to achieve the NHSE. Here, we report the experimental realization of the geometry-dependent skin effect in a two-dimensional reciprocal system, in which the skin effect occurs only at boundaries whose macroscopic symmetry mismatches with the lattice symmetry. The role of spectral reciprocity and symmetry is revealed by connecting reflective channels at given boundaries with the spectral topology of the PBC spectrum. Our work highlights the vital role of reciprocity, symmetry, and macroscopic geometry on the NHSE in dimensionality larger than one and opens new routes for wave structuring using non-Hermitian effects.

7.
Molecules ; 28(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175237

RESUMEN

BACKGROUND AND OBJECTIVE: Asthma is a common chronic inflammatory disease of the airways with no known cure. Lipid mediators (LMs) are a kind of inflammatory signaling molecules which are believed to be involved in the development of asthma. Hyssopus cuspidatus Boriss. is a traditional Uyghur medicine, which is widely used in the treatment of asthma and other respiratory diseases. Extraction of Hyssopus cuspidatus Boriss. was reported to neutralize asthma symptoms. The purpose of the study was to investigate both the anti-inflammatory and immunoregulation properties of the Hyssopus cuspidatus Boriss. extract (SXCF) and its main active constituent, rosmarinic acid (RosA), in vivo. The effect of RosA, a major constituent of SXCF, was evaluated on an asthmatic model, with both anti-inflammatory and immunoregulation properties. MATERIALS AND METHODS: Anti-inflammatory effect of SXCF and RosA was assessed using OVA-induced asthma model mice by UPLC-MS/MS method. RESULTS: Overall, RosA played a critical role in anti-asthma treatment. In total, 90% of LMs species that were significantly regulated by SXCF were covered. On the most important LMs associated with asthma, RosA equivalent induced similar effects as SXCF did. It is believed that some constituents in SXCF could neutralize RosA excessive impacts on LMs.


Asunto(s)
Asma , Espectrometría de Masas en Tándem , Ratones , Animales , Cromatografía Liquida , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Antiinflamatorios/farmacología , Hyssopus , Lípidos/uso terapéutico , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Ovalbúmina/efectos adversos , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Ácido Rosmarínico
8.
Compr Rev Food Sci Food Saf ; 20(6): 6012-6026, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34668314

RESUMEN

D-allulose is the C-3 epimer of D-fructose, which rarely exists in nature, and can be biosynthesized from D-fructose by the catalysis of D-psicose 3-epimerase. D-allulose is safe for human consumption and was recently approved by the United States Food and Drug Administration for food applications. It is not only able be used in food and dietary supplements as a low-calorie sweetener, but also modulates a variety of physiological functions. D-allulose has gained increasing attention owing to its excellent properties. This article presents a review of recent progress on the properties, applications, and bioproduction progress of D-allulose.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Catálisis , Humanos , Edulcorantes , Estados Unidos
9.
Small ; 15(9): e1805182, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30690891

RESUMEN

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, no targeted treatment is available for TNBC, and the most common clinical therapy is tumor resection, which often promotes metastasis risks. Strong evidence suggests that the lymphatic metastasis is mediated by the C-C chemokine receptor type 7 (CCR7)/C-C motif chemokine ligand 21 crosstalk between tumor cells and the lymphatic system. It is hypothesized that CCR7 is a key immune modulator in the tumor microenvironment and the local blockade of CCR7 could effectively inhibit TNBC lymphatic metastasis. Accordingly, a plasmid encoding an antagonistic CCR7 affinity protein-CCR7 trap is delivered by tumor targeting nanoparticles in a highly metastatic 4T1 TNBC mouse model. Results show that CCR7 traps are transiently expressed, locally disrupt the signaling pathways in the tumor site, and efficiently inhibit TNBC lymphatic metastasis, without inducing immunosuppression as observed in systemic therapies using CCR7 monoclonal antibody. Significantly, upon applying CCR7 trap therapy prior to tumor resection, a 4T1 TNBC mouse model shows good prognosis without any further metastasis and relapse. In addition, CCR7 trap therapy efficiently inhibits the lymphatic metastasis in a B16F10 melanoma mouse model, indicating its great potential for various metastatic diseases treatment.


Asunto(s)
Nanopartículas/química , Receptores CCR7/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Metástasis Linfática/genética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores CCR7/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
10.
Biomacromolecules ; 17(3): 1026-39, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26840277

RESUMEN

To date, improving oral bioavailability of water-soluble drugs with poor membrane permeability is still challenging. An example of this includes doxorubicin hydrochloride (DOX·HCl), a widely used chemotherapeutic. We therefore developed a novel DOX·HCl-loaded polymersome (Ps-DOX·HCl) self-assembled by amphiphilic ß-cyclodextrin-centered triarm star polymer (mPEG(2k)-PLA(3k))3-CD with the considerable drug loading capability. Using Madin-Darby canine kidney (MDCK) cells trans-well models, it was found that the cellular uptake and absorptive transport of DOX·HCl was significantly increased and the efflux was attenuated when delivered through polymersomes than free drugs. This phenomenon was further verified in mechanistic studies, which was attributed to the change in membrane transport pathway from paracellular route (free DOX·HCl) to active transcellular transport (drug-loaded polymersomes). Moreover, in vivo pharmacokinetic studies in mice demonstrated a significant increase in the oral bioavailability of Ps-DOX·HCl compared with free DOX·HCl (7.32-fold), as well as extended half-life (8.22-fold). This resulted in a substantial anticancer efficacy against mouse sarcoma 180 (S180) tumor in vivo. The cardiotoxicity, which is intrinsically induced by DOX·HCl, and toxicity toward gastrointestinal tissues were avoided according to histological studies. These findings indicate that (mPEG(2k)-PLA(3k))3-CD copolymer displays great potential as a vehicle for the effective oral delivery of water-soluble drugs with low permeability.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , beta-Ciclodextrinas/química , Administración Oral , Animales , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacocinética , Cardiotoxicidad , Línea Celular Tumoral , Perros , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos ICR , Poliésteres/química , Polietilenglicoles/química , Distribución Tisular
11.
Genome Biol ; 25(1): 169, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956606

RESUMEN

BACKGROUND: Computational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions. RESULTS: In our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers. CONCLUSIONS: Our heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly package https://github.com/humengying0907/deconvBenchmarking and https://doi.org/10.5281/zenodo.8206516 , enabling further developments in deconvolution methods.


Asunto(s)
Benchmarking , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Simulación por Computador , RNA-Seq/métodos , Biología Computacional/métodos
12.
Nat Nanotechnol ; 19(6): 856-866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480836

RESUMEN

The efficacy of STING (stimulator of interferon genes) agonists is due to various factors, primarily inefficient intracellular delivery, low/lack of endogenous STING expression in many tumours, and a complex balance between tumour control and progression. Here we report a universal STING mimic (uniSTING) based on a polymeric architecture. UniSTING activates STING signalling in a range of mouse and human cell types, independent of endogenous STING expression, and selectively stimulates tumour control IRF3/IFN-I pathways, but not tumour progression NF-κB pathways. Intratumoural or systemic injection of uniSTING-mRNA via lipid nanoparticles (LNPs) results in potent antitumour efficacy across established and advanced metastatic tumour models, including triple-negative breast cancer, lung cancer, melanoma and orthotopic/metastatic liver malignancies. Furthermore, uniSTING displays an effective antitumour response superior to 2'3'-cGAMP and ADU-S100. By favouring IRF3/IFN-I activity over the proinflammatory NF-κB signalling pathway, uniSTING promotes dendritic cell maturation and antigen-specific CD8+ T-cell responses. Extracellular vesicles released from uniSTING-treated tumour cells further sensitize dendritic cells via exosome-containing miRNAs that reduced the immunosuppressive Wnt2b, and a combination of LNP-uniSTING-mRNA with α-Wnt2b antibodies synergistically inhibits tumour growth and prolongs animal survival. Collectively, these results demonstrate the LNP-mediated delivery of uniSTING-mRNA as a strategy to overcome the current STING therapeutic barriers, particularly for the treatment of multiple cancer types in which STING is downregulated or absent.


Asunto(s)
Proteínas de la Membrana , Transducción de Señal , Animales , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal/efectos de los fármacos , Ratones , Línea Celular Tumoral , Factor 3 Regulador del Interferón/metabolismo , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Liposomas
13.
Pharm Biol ; 51(9): 1158-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23763258

RESUMEN

CONTEXT: The buds of Coreopsis tinctoria Nutt (Compositae) are used in the treatment of hypertension in the Uyghur folk medicine in China. OBJECTIVE: To investigate vasorelaxant properties of extracts and some flavonoids from C. tinctoria (CT) and their underlying mechanisms in isolated rat thoracic aortic rings. MATERIALS AND METHODS: Vasorelaxant effects of ethanol extracts of CT (CTA) and its flavonoids as well as water-ethanol eluates from CTA by AB-8 resins (CTAA∼CTAF) were evaluated on rat aortic rings pre-contracted with phenylephrine (PE, 1 µM) or high KCl (60 µM). We evaluated the effect of CTA, CTAD and CTAE on PE-induced contraction in a Ca²âº-free medium and a dose-effect curve of Ca²âº in pre-contracted ring with high KCl. RESULTS: Endothelial removal did not modify the effect of CTAD and CTAE (3.00 g/L) neither on PE-pre-contracted rings (164.78 ± 21.44 and 191.47 ± 16.75%) nor on KCl-pre-contracted rings (75.68 ± 10.76 and 125.14 ± 17.41%) compared with intact-endothelium rings pre-contracted with high KCl (100.49 ± 17.30 and 110.81 ± 16.33%). CTAD and CTAE (3.00 g/L) down-regulated the dose-effect curve of Ca²âº in pre-contraction with high KCl, and inhibited the pre-contraction with PE in a Ca²âº-free medium (p < 0.05). Seven flavonoids were obtained from CTAD, of which luteolin (5) and quercetin (6) were found to be the most effective relaxation in rings precontracted with PE (EC50: 0.006 and 0.039 g/L, p < 0.05) or high KCl (EC50: 0.023 and 0.045 g/L, p < 0.05). DISCUSSION AND CONCLUSION: These data demonstrated the vasorelaxant effect of CT, and its mechanism is likely due to an inhibitory effect on calcium movements through cell membranes.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Coreopsis/química , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Antihipertensivos/química , Antihipertensivos/aislamiento & purificación , Antihipertensivos/farmacología , China , Coreopsis/crecimiento & desarrollo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Endotelio Vascular/fisiología , Etnofarmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Flores/química , Flores/crecimiento & desarrollo , Técnicas In Vitro , Luteolina/química , Luteolina/aislamiento & purificación , Luteolina/farmacología , Masculino , Fenilefrina/antagonistas & inhibidores , Fenilefrina/farmacología , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Ratas , Ratas Wistar , Vasoconstrictores/antagonistas & inhibidores , Vasoconstrictores/farmacología , Vasodilatadores/química , Vasodilatadores/aislamiento & purificación
14.
Biomed Pharmacother ; 163: 114818, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182513

RESUMEN

Our previous studies uncovered the glucose-lowering properties of snow chrysanthemum tea, however, the active ingredients and underlying mechanisms were yet to be uncovered. Flavonoids are the most active and abundant components in snow chrysanthemum tea. In this study, we treated leptin-deficient diabetic ob/ob or high-fat diet (HFD)-induced C57BL/6 J obese mice with or without total flavonoids of snow chrysanthemum (TFSC) for 14 weeks. Results indicated that TFSC ameliorated dyslipidemia and fatty liver, thereby reducing hyperlipidemia. Further mechanism experiments, including RNA-seq and experimental validation, revealed TFSC improved glycolipid metabolism primarily by activating the AMPK/Sirt1/PPARγ pathway. Additionally, by integrating UPLC, network pharmacology, transcriptomics, and experimental validation, we identified two novel hypoglycemic compounds, sulfuretin and leptosidin, in TFSC. Treatment with 12.5 µmol/L sulfuretin obviously stimulated cellular glucose consumption, and sulfuretin (3.125, 6.25 and 12.5 µmol/L) significantly mitigated glucose uptake damage and reliably facilitated glucose consumption in insulin-resistant HepG2 cells. Remarkably, sulfuretin interacted with the ligand-binding pocket of PPARγ via three hydrogen bond interactions with the residues LYS-367, GLN-286 and TYR-477. Furthermore, a concentration of 12.5 µmol/L sulfuretin effectively upregulated the expression of PPARγ, exhibiting a comparable potency to a renowned PPARγ agonist at 20 µmol/L. Taken together, our findings have identified two new hypoglycemic compounds and revealed their mechanisms, which significantly expands people's understanding of the active components in snow chrysanthemum that have hypoglycemic effects.


Asunto(s)
Chrysanthemum , Hipoglucemiantes , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Simulación del Acoplamiento Molecular , Chrysanthemum/química , PPAR gamma/genética , PPAR gamma/metabolismo , Farmacología en Red , Transcriptoma , Ratones Endogámicos C57BL , Glucosa , Flavonoides/farmacología ,
15.
Adv Drug Deliv Rev ; 183: 114137, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143893

RESUMEN

The critical role of tumor microenvironment (TME) in tumor initiation and development has been well-recognized after more than a century of studies. Numerous therapeutic approaches targeting TME are rapidly developed including those leveraging nanotechnology, which have been further accelerated since the emergence of immune checkpoint blockade therapies in the past decade. While there are many reviews focusing on TME remodeling therapies via drug delivery and engineering strategies in animal models, state-of-the-art evaluation of clinical development states of TME-targeted therapeutics is rarely found. Here, we illustrate opportunities for integrating nano-delivery system for the development of TME-specific therapeutic regimen, followed by a comprehensive summary of the most up to date approved or clinically evaluated therapeutics targeting cellular and extracellular components within tumor immune and stromal microenvironment, including small molecule and monoclonal antibody drugs as well as nanomedicines. In the end, we also discuss challenges and possible solutions for clinical translation of TME-targeted nanomedicines.


Asunto(s)
Neoplasias , Animales , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Nanotecnología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral
16.
Artículo en Inglés | MEDLINE | ID: mdl-36778756

RESUMEN

As the cost of high-throughput genomic sequencing technology declines, its application in clinical research becomes increasingly popular. The collected datasets often contain tens or hundreds of thousands of biological features that need to be mined to extract meaningful information. One area of particular interest is discovering underlying causal mechanisms of disease outcomes. Over the past few decades, causal discovery algorithms have been developed and expanded to infer such relationships. However, these algorithms suffer from the curse of dimensionality and multicollinearity. A recently introduced, non-orthogonal, general empirical Bayes approach to matrix factorization has been demonstrated to successfully infer latent factors with interpretable structures from observed variables. We hypothesize that applying this strategy to causal discovery algorithms can solve both the high dimensionality and collinearity problems, inherent to most biomedical datasets. We evaluate this strategy on simulated data and apply it to two real-world datasets. In a breast cancer dataset, we identified important survival-associated latent factors and biologically meaningful enriched pathways within factors related to important clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a patient (1) had Covid-19 and (2) would enter the ICU. Furthermore, we were able to associate factors with known Covid-19 related biological pathways.

17.
Cancer Res ; 82(1): 105-113, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753773

RESUMEN

Liver metastasis is a leading cause of cancer morbidity and mortality. Thus, there has been strong interest in the development of therapeutics that can effectively prevent liver metastasis. One potential strategy is to utilize molecules that have broad effects on the liver microenvironment, such as miR-122, a liver-specific miRNA that is a key regulator of diverse hepatic functions. Here we report the development of a nanoformulation miR-122 as a therapeutic agent for preventing liver metastasis. We engineered a galactose-targeted lipid calcium phosphate (Gal-LCP) nanoformulation of miR-122. This nanotherapeutic elicited no significant toxicity and delivered miR-122 into hepatocytes with specificity and high efficiency. Across multiple colorectal cancer liver metastasis models, treatment with Gal-LCP miR-122 treatment effectively prevented colorectal cancer liver metastasis and prolonged survival. Mechanistic studies revealed that delivery of miR-122 was associated with downregulation of key genes involved in metastatic and cancer inflammation pathways, including several proinflammatory factors, matrix metalloproteinases, and other extracellular matrix degradation enzymes. Moreover, Gal-LCP miR-122 treatment was associated with an increased CD8+/CD4+ T-cell ratio and decreased immunosuppressive cell infiltration, which makes the liver more conducive to antitumor immune response. Collectively, this work presents a strategy to improve cancer prevention and treatment with nanomedicine-based delivery of miRNA. SIGNIFICANCE: Highly specific and efficient delivery of miRNA to hepatocytes using nanomedicine has therapeutic potential for the prevention and treatment of colorectal cancer liver metastasis.


Asunto(s)
Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/secundario , MicroARNs/metabolismo , Nanopartículas/metabolismo , Animales , Humanos , Ratones , Metástasis de la Neoplasia , Microambiente Tumoral
18.
Nat Commun ; 13(1): 6239, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266345

RESUMEN

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Metilmalónico/metabolismo , Interleucina-6/metabolismo , Microambiente Tumoral , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
Sci Adv ; 7(8)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597232

RESUMEN

Cancer fibrosis serves as a major therapeutic barrier in desmoplastic tumors. Relaxin (RLN; a systemic hormone) is efficacious to decrease fibrosis, but the in vivo mechanism of action is not clear. Considering the localization of relaxin family peptide receptor type 1 (RXFP1), the receptor for RLN, on macrophages, we hypothesize that macrophages can be modulated by RLN to ameliorate cancer fibrosis. Using KPC mouse model of pancreatic ductal adenocarcinoma (PDAC), here, we report locally expressed RLN with targeted gene delivery induces increased F4/80+CD206+ macrophages originating from Ly6C+ monocytes, promoting fibrosis depletion and cytotoxic T cell infiltration. Moreover, RLN gene delivery synergizes with PD-L1 blockade for tumor inhibition by enhancing T cell-mediated tumor cell killing and macrophage phagocytosis. Collectively, our results reveal previously unidentified insights into the modulation of macrophages to regulate tumor-associated fibrosis, providing a feasible strategy to reverse the immunosuppressive environment and improve the therapeutic outcome of checkpoint immunotherapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Relaxina , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/terapia , Fibrosis , Inhibidores de Puntos de Control Inmunológico , Macrófagos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Relaxina/genética , Relaxina/farmacología
20.
Biomaterials ; 269: 120604, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383300

RESUMEN

Programmed cell death-ligand 1 (PD-L1)-based immune checkpoint blockade therapy using the anti-PD-L1 antibody is effective for a subset of patients with advanced metastatic melanoma but about half of the patients do not respond to the therapy because of the tumor immunosuppressive microenvironment. Immunogenic cell death (ICD) induced by cytotoxins such as doxorubicin (DOX) allows damaged dying tumor cells to release immunostimulatory danger signals to activate dendritic cells (DCs) and T-cells; however, DOX also makes tumor cells upregulate PD-L1 expression and thus deactivate T-cells via the PD-1/PD-L1 pathway. Herein, we show that celastrol (CEL) induced not only strong ICD but also downregulation of PD-L1 expression of tumor cells. Thus, CEL was able to simultaneously activate DCs and T-cells and interrupt the PD-1/PD-L1 pathway between T-cells and tumor cells. In a bilateral tumor model, intratumorally (i.t.) injected celastrol nanoemulsion retaining a high tumor CEL concentration activated the immune system efficiently, which inhibited both the treated tumor and the distant untreated tumor in the mice (i.e., abscopal effect). Thus, this work demonstrates a new and much cost-effective immunotherapy strategy - chemotherapy-induced immunotherapy against melanoma without the need for expensive immune-checkpoint inhibitors.


Asunto(s)
Antígeno B7-H1 , Melanoma , Animales , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Ratones , Triterpenos Pentacíclicos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA