Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 286, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816686

RESUMEN

Septic cardiomyopathy is one of the most severe and common complications in patients with sepsis and poses a great threat to their prognosis. However, the potential mechanisms and effective therapeutic drugs need to be explored. The control of cardiac cell death by miRNAs has emerged as a prominent area of scientific interest in the diagnosis and treatment of heart disorders in recent times. In the present investigation, we discovered that overexpression of miR-31-5p prevented LPS-induced damage to H9C2 cells and that miR-31-5p could inhibit BAP1 production by binding to its 3'-UTR. BRCA1-Associated Protein 1 (BAP1) is a ubiquitin carboxy-terminal hydrolase. BAP1 upregulation blocked effect of miR-31-5p on H9C2 cell injury. Moreover, BAP1 inhibited the expression of solute carrier family 7 member 11 (SLC7A11) by deubiquitinating histone 2 A (H2Aub) on the promoter of SLC7A11. Furthermore, overexpression of miR-31-5p and downregulation of BAP1 inhibited SLC7A11 mediated ferroptosis. In addition, the downregulation of SLC7A11 reversed the inhibitory effect of miR-31-5p on the expression of myocardial injury and inflammatory factors, and cell apoptosis was reversed. In conclusion, these results indicate that miR-31-5p alleviates malignant development of LPS-induced H9C2 cell injury by targeting BAP1 and regulating SLC7A11 deubiquitination-mediated ferroptosis, which confirmed the protective effect of miR-31-5p on H9C2 cell injury and revealed potential mechanisms that may provide new targets for treatment of septic cardiomyopathy.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cardiomiopatías , Ferroptosis , MicroARNs , Miocitos Cardíacos , Sepsis , Transducción de Señal , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Ubiquitinación , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Animales , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Sepsis/genética , Sepsis/metabolismo , Línea Celular , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Ratas , Modelos Animales de Enfermedad , Humanos , Regulación de la Expresión Génica , Lipopolisacáridos/farmacología , Masculino
2.
Arq Bras Cardiol ; 121(6): e20230675, 2024.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-38958296

RESUMEN

BACKGROUND: The anthracycline chemotherapeutic antibiotic doxorubicin (DOX) can induce cumulative cardiotoxicity and lead to cardiac dysfunction. Long non-coding RNAs (lncRNAs) can function as important regulators in DOX-induced myocardial injury. OBJECTIVE: This study aims to investigate the functional role and molecular mechanism of lncRNA OXCT1 antisense RNA 1 (OXCT1-AS1) in DOX-induced myocardial cell injury in vitro. METHODS: Human cardiomyocytes (AC16) were stimulated with DOX to induce a myocardial cell injury model. OXCT1-AS1, miR-874-3p, and BDH1 expression in AC16 cells were determined by RT-qPCR. AC16 cell viability was measured by XTT assay. Flow cytometry was employed to assess the apoptosis of AC16 cells. Western blotting was used to evaluate protein levels of apoptosis-related markers. Dual-luciferase reporter assay was conducted to verify the binding ability between miR-874-3p and OXCT1-AS1 and between miR-874-3p and BDH1. The value of p<0.05 indicated statistical significance. RESULTS: OXCT1-AS1 expression was decreased in DOX-treated AC16 cells. Overexpression of OXCT1-AS1 reversed the reduction of cell viability and promotion of cell apoptosis caused by DOX. OXCT1-AS1 is competitively bound to miR-874-3p to upregulate BDH1. BDH1 overexpression restored AC16 cell viability and suppressed cell apoptosis under DOX stimulation. Knocking down BDH1 reversed OXCT1-AS1-mediated attenuation of AC16 cell apoptosis under DOX treatment. CONCLUSION: LncRNA OXCT1-AS1 protects human myocardial cells AC16 from DOX-induced apoptosis via the miR-874-3p/BDH1 axis.


FUNDAMENTO: O antibiótico quimioterápico antraciclina doxorrubicina (DOX) pode induzir cardiotoxicidade cumulativa e levar à disfunção cardíaca. RNAs não codificantes longos (lncRNAs) podem funcionar como importantes reguladores na lesão miocárdica induzida por DOX. OBJETIVO: Este estudo tem como objetivo investigar o papel funcional e o mecanismo molecular do RNA antisense lncRNA OXCT1 1 (OXCT1-AS1) na lesão celular miocárdica induzida por DOX in vitro. MÉTODOS: Cardiomiócitos humanos (AC16) foram estimulados com DOX para induzir um modelo de lesão celular miocárdica. A expressão de OXCT1-AS1, miR-874-3p e BDH1 em células AC16 foi determinada por RT-qPCR. A viabilidade das células AC16 foi medida pelo ensaio XTT. A citometria de fluxo foi empregada para avaliar a apoptose de células AC16. Western blotting foi utilizado para avaliar os níveis proteicos de marcadores relacionados à apoptose. O ensaio repórter de luciferase dupla foi conduzido para verificar a capacidade de ligação entre miR-874-3p e OXCT1-AS1 e entre miR-874-3p e BDH1. O valor de p<0,05 indicou significância estatística. RESULTADOS: A expressão de OXCT1-AS1 foi diminuída em células AC16 tratadas com DOX. A superexpressão de OXCT1-AS1 reverteu a redução da viabilidade celular e a promoção da apoptose celular causada pela DOX. OXCT1-AS1 está ligado competitivamente ao miR-874-3p para regular positivamente o BDH1. A superexpressão de BDH1 restaurou a viabilidade das células AC16 e suprimiu a apoptose celular sob estimulação com DOX. A derrubada do BDH1 reverteu a atenuação da apoptose de células AC16 mediada por OXCT1-AS1 sob tratamento com DOX. CONCLUSÃO: LncRNA OXCT1-AS1 protege células miocárdicas humanas AC16 da apoptose induzida por DOX através do eixo miR-874-3p/BDH1.


Asunto(s)
Apoptosis , Doxorrubicina , MicroARNs , Miocitos Cardíacos , ARN Largo no Codificante , Humanos , Doxorrubicina/farmacología , ARN Largo no Codificante/genética , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Antibióticos Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Reproducibilidad de los Resultados , Western Blotting , Citometría de Flujo , ARN Endógeno Competitivo
3.
Ann Med Surg (Lond) ; 85(12): 5952-5962, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098561

RESUMEN

Background: Sepsis is a systemic inflammatory disease, and Brevilin A (BA) has a powerful anti-inflammatory effect. However, whether BA has a similar effect on septic cardiomyopathy remains unclear. This study aimed to investigate the effect and mechanism of BA in septic cardiomyopathy. Methods: First, a model of septic cardiomyopathy was constructed in vitro and in vivo. The expression of the cardiac injury markers, NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammation factors and its upstream modulator NF-κB was detected by real-time polymerase chain reaction and western blotting. Cardiac function was measured using echocardiography, cell viability was detected using the methyl thiazolyl tetrazolium assay. To further investigate the effects of BA on septic cardiomyopathy, different concentrations of BA were used. The experiment was divided into control group, LPS induced- group, LPS+2.5, 5.0, 10.0 µM BA treatment group of the vitro model, and the Sham, CLP, CLP+10, 20, 30 mg/kg BA treatment groups of the rat vivo model. Lastly, cardiac injury, NLRP3 inflammation, and cardiac function were assessed in each group. Results: The mRNA and protein expression of cardiac inflammation and injury genes were significantly increased in the in vitro and in vivo sepsis cardiomyopathy models. When different concentrations of BA were used in sepsis cardiomyopathy in vivo and in vitro, the above-mentioned myocardial inflammation and injury factors were suppressed to varying degrees, cell viability increased, cardiac function improved, and the survival rate of rats also increased. Conclusion: BA ameliorated sepsis cardiomyopathy by inhibiting NF-κB/NLRP3 inflammation activation.

4.
Brief Funct Genomics ; 19(3): 229-234, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32058568

RESUMEN

CRISPR/Cas9, as a new genome-editing tool, offers new approaches to understand and treat diseases, which is being rapidly applied in various areas of biomedical research including sepsis field. The type II prokaryotic CRISPR/Cas system uses a single-guide RNA (sgRNA) to target the Cas9 nuclease to a specific genomic sequence, which is introduced into disease models for functional characterization and for testing of therapeutic strategies. This incredibly precise technology can be used for therapeutic research of gene-related diseases and to program any sequence in a target cell. Most importantly, the multifunctional capacity of this technology allows simultaneous editing of several genes. In this review, we focus on the basic principles, advantages and limitations of CRISPR/Cas9 and the use of the CRISPR/Cas9 system as a powerful tool in sepsis research and as a new strategy for the treatment of sepsis.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sepsis/genética , Edición Génica , Técnicas de Transferencia de Gen , Humanos
5.
Biosci Rep ; 40(9)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32955094

RESUMEN

BACKGROUND: Keratinocyte migration is essential for skin wound healing and recent studies demonstrated that microRNAs (miRNAs) are involved in the differentiation, migration and apoptosis in keratinocytes. However, the function of miR-26a in wound healing remains to be largely explored. METHODS: Northern blot and quantitative reverse transcriptase PCR (qRT-PCR) were used to detect the miR-26a expression and Western blot was used to detect integrin α-5 (ITGA5), phosphatidylinositol-3-kinase (PI3K), p-PI3K, protein kinase B (AKT) and p-AKT protein expression in immortalized human keratinocyte cell line HaCaT and normal human epidermal keratinocytes (NHEK) after 2 ng/ml transforming growth factor-ß1 (TGF-ß1) treatment for 0, 6, 12 and 24 h. Transwell assay and Wound healing assay were introduced to measure the cell migration of HaCaT cells. TargetScan online database, luciferase reporter assay and RNA immunoprecipitation (RIP) were employed to confirm the relationship between miR-26a and ITGA5. RESULTS: The RNA expression of miR-26a was down-regulated and ITGA5 protein expression was up-regulated by TGF-ß1 treatment in HaCaT and NHEK cells in a time-dependent manner. MiR-26a overexpression inhibited the migration of HaCaT cells induced by TGF-ß1 while miR-26a inhibitor enhanced the migration. ITGA5 was a downstream target mRNA and regulated by miR-26a. ITGA5 overexpression reversed the inhibitory effect of miR-26a on migration in HaCaT, while ITGA5 knockdown attenuated the stimulative effect of miR-26a inhibitor in HaCaT via PI3K/AKT signaling pathway. CONCLUSION: MiR-26a overexpression inhibited TGF-ß1 induced HaCaT cells migration via down-regulating ITGA5 through activating the PI3K/AKT signaling pathway.


Asunto(s)
Integrinas/genética , Queratinocitos/fisiología , MicroARNs/metabolismo , Cicatrización de Heridas/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Integrinas/metabolismo , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Cicatrización de Heridas/efectos de los fármacos
6.
Dis Model Mech ; 8(9): 1071-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26092124

RESUMEN

Myocardial infarction and stroke are frequent after surgical procedures and consume a considerable amount of benefit of surgical therapy. Perioperative stress, induced by surgery, is composed of hemodynamic and inflammatory reactions. The effects of perioperative stress on atherosclerotic plaques are ill-defined. Murine models to investigate the influence of perioperative stress on plaque stability and rupture are not available. We developed a model to investigate the influence of perioperative stress on plaque growth and stability by exposing apolipoprotein-E-deficient mice, fed a high cholesterol diet for 7 weeks, to a double hit consisting of 30 min of laparotomy combined with a substantial blood loss (approximately 20% of total blood volume; 400 µl). The innominate artery was harvested 72 h after the intervention. Control groups were sham and baseline controls. Interleukin-6 (IL-6) and serum amyloid A (SAA) plasma levels were determined. Plaque load, vascular smooth muscle cell (VSMC) and macrophage content were quantified. Plaque stability was assessed using the Stary score and frequency of signs of plaque rupture were assessed. High-dose atorvastatin (80 mg/kg body weight/day) was administered for 6 days starting 3 days prior to the double hit. A single dose of an IL-6-neutralizing antibody or the fusion protein gp130-Fc selectively targeting IL-6 trans-signaling was subcutaneously injected. IL-6 plasma levels increased, peaking at 6 h after the intervention. SAA levels peaked at 24 h (n=4, P<0.01). Plaque volume increased significantly with the double hit compared to sham (n=8, P<0.01). More plaques were scored as complex or bearing signs of rupture after the double hit compared to sham (n=5-8, P<0.05). Relative VSMC and macrophage content remained unchanged. IL-6-inhibition or atorvastatin, but not blocking of IL-6 trans-signaling, significantly decreased plaque volume and complexity (n=8, P<0.01). Using this model, researchers will be able to further investigate the pathophysiology of perioperative plaque stability, which can result in myocardial infarction, and, additionally, to test potential protective strategies.


Asunto(s)
Apolipoproteínas E/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Interleucina-6/antagonistas & inhibidores , Placa Aterosclerótica/fisiopatología , Animales , Atorvastatina/uso terapéutico , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Inflamación , Laparotomía , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Periodo Perioperatorio , Rotura , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA