Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062822

RESUMEN

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Asunto(s)
Flagelos , Simbiosis , Sistemas de Secreción Tipo III , Flagelos/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiología , Regulación Bacteriana de la Expresión Génica , Photorhabdus/metabolismo , Photorhabdus/patogenicidad , Photorhabdus/genética , Photorhabdus/fisiología , Nematodos/microbiología , Nematodos/metabolismo , Biopelículas/crecimiento & desarrollo
2.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366186

RESUMEN

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Asunto(s)
Nematodos , Xenorhabdus , Animales , Humanos , Xenorhabdus/metabolismo , Células HeLa , Nematodos/microbiología , Enterobacteriaceae , Simbiosis
3.
Appl Microbiol Biotechnol ; 107(17): 5439-5451, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428187

RESUMEN

Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the ß-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.


Asunto(s)
Actinobacteria , Saccharopolyspora , Peróxido de Hidrógeno/metabolismo , Saccharopolyspora/metabolismo , Actinobacteria/metabolismo , Macrólidos/metabolismo , Combinación de Medicamentos
4.
Microb Pathog ; 169: 105646, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716927

RESUMEN

Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Resinas Acrílicas , Adyuvantes Inmunológicos/farmacología , Aeromonas hydrophila/fisiología , Aeromonas veronii , Animales , Carpas/metabolismo , Colesterol , Enfermedades de los Peces/microbiología , Inmunidad Innata , Inmunoglobulina M , Muramidasa/genética , Muramidasa/farmacología , Saponinas de Quillaja
5.
Microb Pathog ; 166: 105488, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367573

RESUMEN

Many fishes infected with Pseudomonas plecoglossicida generally suffer from "visceral white spot disease" or even die. In this study, a dominant pathogen strain was isolated from the intestinal tract of diseased crucian carp in the Wangcheng Lake area, Changsha, and it was identified as P. plecoglossicida. The selected strain was a new strain named as P. plecoglossicida LQJ06.Strain LQJ06 basically colonized the intestine and poisoned zebrafish as show by fluorescent labelling. Pathological structural analysis of tissue sections indicated that the intestinal tract was seriously damaged, epithelial cells in the intestinal tissue were necrotic, intestinal villi were sloughed, liver cells were vacuolated, nuclei were pyknotic and shifted, and lymphocytes were proliferated in the spleen. P. plecoglossicida LQJ06 strain could invade and proliferate in the grass carp liver cell line L8824, which led to a stress response, including apoptosis. Cell morphology was changed owing to the toxicity of the culture supernatant of the LQJ06 strain, which mainly manifested as aggregation between cells, pyknosisd and slow growth or even death. An inactivated vaccine derived from P. plecoglossicida LQJ06 prepared in this study was safe and nontoxic to grass carp liver cells. Compared with those after oral administration, most of the cellular immune factors were expressed earlier and at a higher level after injection immunization. The intestinal tract and liver from zebrafish mainly expressed the IFN-γ2 and IL-1ß genes, respectively, after immunization. The upregulation of these immune-related genes proved that the vaccine could strengthen the immunity of zebrafish, induce inflammation and promote resistance to pathogenic infection. The results of these preliminary tests provide a scientific basis for further research on the prevention and control of P. plecoglossicida, and an essential preliminary basis for the development of an inactivated vaccine against P. plecoglossicida.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Enfermedades de los Peces/prevención & control , Pseudomonas , Vacunas de Productos Inactivados , Virulencia , Pez Cebra
6.
Microb Cell Fact ; 21(1): 83, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568948

RESUMEN

BACKGROUND: Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involve in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently understanding its regulatory mechanism, and improving its production by metabolic engineering. RESULTS: Here, we identified a TetR family transcriptional regulator, SP_2854, that can positively regulate butenyl-spinosyn biosynthesis and affect strain growth, glucose consumption, and mycelial morphology in S. pogona. Using targeted metabolomic analyses, we found that SP_2854 overexpression enhanced glucose metabolism, while SP_2854 deletion had the opposite effect. To decipher the overproduction mechanism in detail, comparative proteomic analysis was carried out in the SP-2854 overexpressing mutant and the original strain, and we found that SP_2854 overexpression promoted the expression of proteins involved in glucose metabolism. CONCLUSION: Our findings suggest that SP_2854 can affect strain growth and development and butenyl-spinosyn biosynthesis in S. pogona by controlling glucose metabolism. The strategy reported here will be valuable in paving the way for genetic engineering of regulatory elements in actinomycetes to improve important natural products production.


Asunto(s)
Proteómica , Saccharopolyspora , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosa/metabolismo , Macrólidos/metabolismo
7.
Appl Microbiol Biotechnol ; 106(2): 647-661, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35019997

RESUMEN

Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.


Asunto(s)
Proteínas Fúngicas , Penicillium , Amilasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Glicósido Hidrolasas/genética , Penicillium/genética , Penicillium/metabolismo , Regiones Promotoras Genéticas
8.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36326838

RESUMEN

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Asunto(s)
Productos Biológicos , Xenorhabdus , Xenorhabdus/genética , Recombinasas/genética , Recombinasas/metabolismo , Productos Biológicos/metabolismo , Operón , Péptidos Cíclicos/metabolismo
9.
Appl Microbiol Biotechnol ; 106(8): 3081-3091, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35376972

RESUMEN

PII signal transduction proteins are widely found in bacteria and plant chloroplast, and play a central role in nitrogen metabolism regulation, which interact with many key proteins in metabolic pathways to regulate carbon/nitrogen balance by sensing changes in concentrations of cell-mediated indicators such as α-ketoglutarate. In this study, the knockout strain Saccharopolyspora pogona-ΔpII and overexpression strain S. pogona-pII were constructed using CRISPR/Cas9 technology and the shuttle vector POJ260, respectively, to investigate the effects on the growth and secondary metabolite biosynthesis of S. pogona. Growth curve, electron microscopy, and spore germination experiments were performed, and it was found that the deletion of the pII gene inhibited the growth to a certain extent in the mutant. HPLC analysis showed that the yield of butenyl-spinosyn in the S. pogona-pII strain increased to 245% than that in the wild-type strain while that in S. pogona-ΔpII decreased by approximately 51%. This result showed that the pII gene can promote the growth and butenyl-spinosyn biosynthesis of S. pogona. This research first investigated PII nitrogen metabolism regulators in S. pogona, providing significant scientific evidence and a research basis for elucidating the mechanism by which these factors regulate the growth of S. pogona, optimizing the synthesis network of butenyl-spinosyn and constructing a strain with a high butenyl-spinosyn yield. KEY POINTS: • pII key nitrogen regulatory gene deletion can inhibit the growth and development of S. pogona. • Overexpressed pII gene can significantly promote the butenyl-spinosyn biosynthesis. • pII gene can affect the amino acid circulation and the accumulation of butenyl-spinosyn precursors in S. pogona.


Asunto(s)
Nitrógeno , Saccharopolyspora , Proteínas Bacterianas/genética , Genes Reguladores , Macrólidos/metabolismo , Nitrógeno/metabolismo , Saccharopolyspora/metabolismo
10.
Microb Cell Fact ; 20(1): 157, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34391414

RESUMEN

BACKGROUND: Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. RESULTS: Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. CONCLUSION: Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Insecticidas/metabolismo , Hierro/metabolismo , Macrólidos/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/farmacología , Grupo Citocromo b/farmacología , Ferritinas/farmacología , Ingeniería Genética , Macrólidos/clasificación , Proteómica , Saccharopolyspora/efectos de los fármacos , Saccharopolyspora/genética , Saccharopolyspora/crecimiento & desarrollo
11.
Appl Microbiol Biotechnol ; 105(4): 1519-1533, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33484320

RESUMEN

Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.


Asunto(s)
Sintasas Poliquetidas , Saccharopolyspora , Macrólidos , Familia de Multigenes , Sintasas Poliquetidas/genética , Saccharopolyspora/genética
12.
Microb Pathog ; 143: 104092, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32145322

RESUMEN

Aeromonas veronii is a widely distributed novel pathogen that can affect humans and animals, it can cause sepsis in fish with high mortality and serious economic losses to aquaculture. In the study, the gut microbiome of the infected and uninfected grass carp with Aeromonas veronii were analyzed probiotics and pathogenic bacteria by the Miseq high-throughput sequencing, the results showed that the infected fish were significantly higher in Proteobacteria, Firmicutes, Fusobacteria, and the immune factors in liver and kidney were up-regulated by qRT-PCR. In order to effectively inhibit the pathogen, we screened an actinomycete strain and had good antibacterial effect on Aeromonas veronii. The new antagonistic bacteria was named as Streptomyces flavotricini X101, the whole genome sequencing revealed that the metabolic process was most active. After grass carp was inoculated with the minimum inhibitory concentration of 900 µg/mL of the strain's fermentation supernatant, then Aeromonas veronii was injected, we found that the pathological symptoms such as body surface, anus and abdominal congestion were alleviated by H&E staining. Cellular experiments showed that it wasn't toxic to liver cells of grass carp. Overall, this is the first study of changes in intestinal flora, phenotype, and immune factors in grass crap infected with Aeromonas veronii, it had important theoretical significance and application value for immunization and prevention.


Asunto(s)
Aeromonas veronii/fisiología , Carpas/microbiología , Enfermedades de los Peces/microbiología , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/fisiología , Animales , Carpas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/patología , Microbioma Gastrointestinal/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulina M/metabolismo , Interleucinas/metabolismo , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptomyces/genética
13.
Microb Cell Fact ; 19(1): 155, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727458

RESUMEN

BACKGROUND: Filamentous fungi have long been used as hosts for the production of proteins, enzymes and valuable products in various biotechnological applications. However, recombinant proteins are expressed with highly secreted host proteins when stronger promoters are used under inducing conditions. In addition, the efficiency of target protein expression can be limited by the application of constitutive promoters in recently developed filamentous fungal expression systems. RESULTS: In this study, a novel expression system was constructed by using a Penicillium oxalium strain that has powerful protein secretion capability. The secretory background of the host was reduced by knocking out the Amy13A protein and utilizing the starch as a carbon source. The strong promoter amy15A(p) was further improved by overexpressing the transcription activator AmyR and deleting of putative repressor CreA. By using the native amylase Amy15A as a reporter, the efficiency of expression from the amy15A promoter was dramatically and specifically enhanced after redesigning the regulatory network of amylase expression. CONCLUSIONS: Our researches clearly indicated that the triple-gene recombinant strain Δ13A-OamyR-ΔCreA, with the amy15A(p) promoter could be used as a suitable expression system especially for high-level and high-purity protein production.


Asunto(s)
Amilasas/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Penicillium/genética , Amilasas/biosíntesis , Penicillium/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Almidón/metabolismo , Factores de Transcripción/genética , Ureohidrolasas/genética
14.
Microb Cell Fact ; 19(1): 27, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046731

RESUMEN

BACKGROUND: Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize. RESULTS: In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis. CONCLUSION: This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética , Redes y Vías Metabólicas , Saccharopolyspora/genética
15.
Fish Shellfish Immunol ; 98: 632-640, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31669281

RESUMEN

In this study, a Streptomyces strain was isolated from the soil samples of Yanghu Wetland Park in Changsha, Hunan Province. This strain showed excellent antimicrobial activity against 10 fish pathogens, as indicated by the results of the agar-diffusion and oxford cup assays. After 16s rDNA sequencing and physiological & biochemical analyses, it was identified as Streptomyces amritsarensis, namely for S. amritsarensis N1-32. Cytotoxicity test was performed, and the results exhibited that this strain had no toxicity to hepatic L8824 cell line from grass carp liver. The diets supplemented strain N1-32 at concentrations of 1 × 107 cfu/g and 1 × 109 cfu/g was used to feed fish. After 28 days, the expression levels of antioxidant-related genes Nrf2 and Keap1 in the liver and spleen were significantly up-regulated, and the expression of immune-related gene IgM was notably increased in the liver, kidney, head-kidney, and spleen. Toll-like receptor 4 (TLR4) gene expression was up-regulated in the spleen, and TLR4, myeloid differentiation factor 88 (MyD88) gene were up-regulated in the kidney. The survival rate of grass carp was significantly improved after pathogen infection. Whole-genome analysis of N1-32 showed that the strain harbored related genes, capability for producing substances that enhance the immunity of grass carp and inhibit pathogens. A total of 22 gene clusters were identified in the genome, including 5 terpene gene clusters, 4 nonribosomal peptide-synthetase (NRPS) gene clusters and 2 lantipeptide gene clusters. In summary, these results showed that strain N1-32 as a feed additive could regulate grass carp immunity and enhance the resistance of grass carp against fish pathogens.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/metabolismo , Bacterias/efectos de los fármacos , Expresión Génica , Inmunidad Humoral , Probióticos/farmacología , Streptomyces/química , Alimentación Animal/análisis , Dieta/veterinaria , Expresión Génica/efectos de los fármacos , Genoma Bacteriano , Inmunidad Humoral/efectos de los fármacos , Probióticos/administración & dosificación , Streptomyces/genética
16.
Fish Shellfish Immunol ; 95: 305-313, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31654768

RESUMEN

IFN-γ is an immunomodulatory factor that has been extensively studied in phenotypes of mammalian macrophages and multifarious inflammatory responses. Usually these studies relied on the classical synergistic activation of IFN-γ with LPS (LipoPolySaccharides). However, non-mammalian vertebrates, and in particular fish, are not very susceptible to LPS, and easily acquire tolerance upon repeated exposure. Therefore, for studies in fish, it is necessary to replace the classical IFN-γ+LPS immune system activation method, and find other pathogen-associated molecular patterns (PAMPs) capable of stimulating the fish immune system. Here we used an important farmed fish species, Ctenopharyngodon idella, to study the effects of CiIFN-γ2 (C. idella IFN-γ2) and chitosan (CS) on its immune responses in vivo and vitro. Our results showed that the combination of CS and CiIFN-γ2 significantly enhanced the activation of macrophages, with an activation intensity even stronger than in CiIFN-γ2 and CiIFN-γ2+LPS groups. In vivo, injection of CiIFN-γ2 could improve the survival rate of C. idella infected with Flavobacterium columnare, while a combined injection of CiIFN-γ2+CS only improved protection in the early stages after the challenge. Notably, both injections reduced the bacterial load of viscera and improved the levels of several plasma parameters (TP, T-SOD, LA, and NO). However, a dramatic up-regulation of inflammatory factors, severe inflammatory damage in the intestines and hepatopancreas, and increased mortality in late stages of infection were observed in the CiIFN-γ2+CS group. Our findings provide new insights into the macrophage activation phenotypes and inflammatory responses in fish. They also demonstrate that CiIFN-γ2 could be used as a potential immunopotentiator, but not in combination with CS. This suggests that selection of immunological adjuvants should be carefully tested experimentally.


Asunto(s)
Carpas , Quitosano/efectos adversos , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Flavobacteriaceae/veterinaria , Inflamación/veterinaria , Interferón gamma/farmacología , Sustancias Protectoras/farmacología , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Inflamación/inducido químicamente
17.
Appl Microbiol Biotechnol ; 103(21-22): 8987-8999, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31637491

RESUMEN

This study evaluated the inhibition and interaction of Bacillus velezensis BvL03 as a probiotic agent against Aeromonas hydrophila. Strain BvL03 isolated from sediment samples of fish ponds had excellent antimicrobial activity against several fish pathogenic bacteria, especially Aeromonas, including A. hydrophila, A. veronii, A. caviae, and A. sobria. The successful amplification of lipopeptide antimicrobial chemical biosynthetic genes, including iturin family (ituA, ituB, and ituD), bacillomycin family (bacA, bacD, and bacAB), surfactin family (srfAB, srfC, and srfAA), and subtilosin family (albF and sunT) from the genome of BvL03 strain, confirmed its predominant antimicrobial activity. The challenge test suggested that BvL03 significantly decreased fish mortality when challenged with A. hydrophila, which had a cumulative mortality of 12.5% in the treatment group. Toxicity and hemolytic activity of A. hydrophila after co-cultured with BvL03 were relieved as confirmed by the cell experiments, when the initial inoculated concentration of BvL03 was 109 cfu/mL or higher. Moreover, the BvL03 strain labeled with GFP protein (BvL03-GFP) and AhX040 strain labeled with mCherry protein (AhX040-mCherry) were injected into grass carps. The fluorescence levels were monitored by using In Vivo Imaging System (IVIS), in which the green color was steadily increasing, whereas the red color was gradually weakening. Whole genome sequencing revealed that strain BvL03 possesses 15 gene clusters related to antibacterial compounds, including 5 NRPS gene clusters and 3 PKS gene clusters. These results suggested that B. velezensis BvL03 has the potential to be developed as a probiotic candidate against A. hydrophila infection in aquaculture.


Asunto(s)
Aeromonas hydrophila/fisiología , Antibiosis/fisiología , Bacillus/fisiología , Agentes de Control Biológico/metabolismo , Carpas/microbiología , Enfermedades de los Peces/microbiología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Enfermedades de los Peces/prevención & control , Lipopéptidos/genética , Lipopéptidos/metabolismo , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Probióticos , Secuenciación Completa del Genoma
18.
J Invertebr Pathol ; 167: 107247, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31521727

RESUMEN

Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with the nematodes of the Steinernematid family, are known to produce several toxic proteins that interfere with the cellular immune responses of insects. In order to identify novel cytotoxins from Xenorhabdus spp., a fosmid library of X. stockiae HN_xs01 strain was constructed and the cytotoxicity of fosmid clones was tested against insect midgut CF-203 cells. An FS2 clone bearing the srfABC operon, originally identified in Salmonella enterica, exhibited excellent cytotoxicity against CF-203 cells. The srfABC operon alone exhibited cytotoxic effects and all three components of SrfABC toxin were essential for full cytotoxicity. Immunofluorescence studies showed that SrfABC toxin could depolymerize microtubules and disrupt mitochrondria. Flow cytometer analysis demonstrated that SrfABC toxin significantly induced G2/M phase arrest and apoptosis in CF-203 cells. Furthermore, SrfABC toxin exhibits highly injectable insecticidal activity against Helicoverpa armigera larvae. As is often found in host-associated microorganisms, SrfABC toxin is thought to play an important role in host colonization.


Asunto(s)
Toxinas Bacterianas/farmacología , Mariposas Nocturnas/microbiología , Rhabditoidea/microbiología , Xenorhabdus , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Ciclo Celular/efectos de los fármacos , Línea Celular , Genoma Bacteriano , Biblioteca Genómica , Insectos/efectos de los fármacos , Insectos/microbiología , Insectos/parasitología , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidad
19.
Appl Microbiol Biotechnol ; 102(18): 8011-8021, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29984395

RESUMEN

Polynucleotide phosphorylase is a highly conserved protein found in bacteria and fungi that can regulate the transcription of related enzymes involved in amino acid metabolism, organic acid metabolism, and cell biosynthesis. We studied the effect of polynucleotide phosphorylase on Saccharopolyspora pogona (S. pogona) growth and the synthesis of secondary metabolites. First, we generated the overexpression vector pOJ260-PermE-pnp via overlap extension PCR. The vector pOJ260-PermE-pnp was then introduced into S. pogona by conjugal transfer, thereby generating the recombination strain S. pogona-Pnp. Results showed that engineering strains possessed higher biomass than those of the wild-type strains. Moreover, the ability of these strains to produce spores on solid medium was stronger than that of the wild-type strains. HPLC results revealed that the butenyl-spinosyn yield in S. pogona-Pnp increased by 1.92-fold compared with that of S. pogona alone. These findings revealed that overexpression of polynucleotide phosphorylase effectively promoted butenyl-spinosyn biosynthesis in S. pogona. This result may be extended to other Streptomyces for strain improvement.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrólidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Saccharopolyspora/enzimología , Saccharopolyspora/genética , Proteínas Bacterianas/genética , Ingeniería Metabólica , Polirribonucleótido Nucleotidiltransferasa/genética , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/metabolismo
20.
Curr Microbiol ; 72(4): 465-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26742770

RESUMEN

In order to develop an efficient system for deleting genomic segment in Agrobacterium tumefaciens to analyze gene functions and construct marker gene-free recombinant strains, a Cre recombinase expression plasmid was constructed by placing its encoding gene under the control of Ptet promoter and cloning into the plasmid replicable in both A. tumefaciens and E. coli. Triple recombineering was applied to efficiently construct integrative vectors which were used to introduce loxP sites and selection markers into the chromosome of A. tumefaciens. Cre recombinase could be properly induced by anhydrotetracycline in A. tumefaciens, which was revealed by the fact that kanamycin resistance gene flanked by two parallel loxP sites was excised from the genome of A. tumefaciens with virtually 100% efficiency. And what is more, an A. tumefaciens mutant carrying large-deletion (~85 kb) in genome was successfully constructed by Cre/loxP system. Here, we described the application of combination of Cre/loxP system and triple recombineering to efficiently excise genomic segment in A. tumefaciens, which also would facilitate efficient construction of multiple gene disruptions in A. tumefaciens.


Asunto(s)
Agrobacterium tumefaciens/genética , Ingeniería Genética , Genoma Bacteriano , Recombinación Homóloga , Integrasas/metabolismo , Eliminación de Secuencia , Agrobacterium tumefaciens/efectos de los fármacos , Agrobacterium tumefaciens/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Eliminación de Gen , Orden Génico , Marcación de Gen , Genes Bacterianos , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA