Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 609(7929): 925-930, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171386

RESUMEN

The paradigmatic example of a topological phase of matter, the two-dimensional Chern insulator1-5, is characterized by a topological invariant consisting of a single integer, the scalar Chern number. Extending the Chern insulator phase from two to three dimensions requires generalization of the Chern number to a three-vector6,7, similar to the three-dimensional (3D) quantum Hall effect8-13. Such Chern vectors for 3D Chern insulators have never been explored experimentally. Here we use magnetically tunable 3D photonic crystals to achieve the experimental demonstration of Chern vectors and their topological surface states. We demonstrate Chern vector magnitudes of up to six, higher than all scalar Chern numbers previously realized in topological materials. The isofrequency contours formed by the topological surface states in the surface Brillouin zone form torus knots or links, whose characteristic integers are determined by the Chern vectors. We demonstrate a sample with surface states forming a (2, 2) torus link or Hopf link in the surface Brillouin zone, which is topologically distinct from the surface states of other 3D topological phases. These results establish the Chern vector as an intrinsic bulk topological invariant in 3D topological materials, with surface states possessing unique topological characteristics.

2.
Phys Rev Lett ; 132(11): 113802, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563911

RESUMEN

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels that produce a quantized Hall conductance; due to their chirality, and the topological protection by the Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here, we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured loss configuration imparts the edge states' complex energy spectrum with a feature known as point-gap winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant of the bulk (which remains intact) and induces mode localization via the "non-Hermitian skin effect." The interplay of the two topological phenomena-the Chern number and point-gap winding-gives rise to a non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle. Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have superior robustness against local defects and disorders.

3.
Phys Rev Lett ; 132(15): 156602, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682981

RESUMEN

Photonic Chern insulators are known for their topological chiral edge states (CESs), whose absolute existence is determined by the bulk band topology, but concrete dispersion can be engineered to exhibit various properties. For example, the previous theory suggested that the edge dispersion can wind many times around the Brillouin zone to slow down light, which can potentially overcome fundamental limitations in conventional slow-light devices: narrow bandwidth and keen sensitivity to fabrication imperfection. Here, we report the first experimental demonstration of this idea, achieved by coupling CESs with resonance-induced nearly flat bands. We show that the backscattering-immune hybridized CESs are significantly slowed down over a relatively broad bandwidth. Our work thus paves an avenue to broadband topological slow-light devices.

4.
Phys Rev Lett ; 125(26): 263603, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449768

RESUMEN

Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here, we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include tilted dispersion, chiral-like robust propagation in samples with certain shapes, and 100% scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.

5.
Phys Rev Lett ; 125(13): 133603, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034499

RESUMEN

Recent studies have revealed the counterintuitive possibility that increasing disorder can turn a topologically trivial insulator into a nontrivial insulator, called a topological Anderson insulator (TAI). Here, we propose and experimentally demonstrate a photonic TAI in a two-dimensional disordered gyromagnetic photonic crystal in the microwave regime. We directly observe the disorder-induced topological phase transition from a trivial insulator to a TAI with robust chiral edge states. We also demonstrate topological heterostructures that host edge states at interfaces between domains with different disorder parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA