RESUMEN
Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.
Asunto(s)
Silenciador del Gen , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Heterocromatina/genética , Provirus/genética , Integración Viral/genética , Latencia del Virus/genética , Adulto , Anciano , Centrómero/genética , Cromosomas Humanos Par 19/genética , ADN Satélite/genética , Femenino , Genoma Viral/genética , Infecciones por VIH/sangre , VIH-1/aislamiento & purificación , Heterocromatina/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Provirus/aislamiento & purificación , Proteínas Represoras/genética , Sitio de Iniciación de la TranscripciónRESUMEN
We describe the endocranial structures of Hamadasuchus, a peirosaurid crocodylomorph from the late Albian-Cenomanian Kem Kem group of Morocco. The cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization, as well as the bones of the braincase of a new specimen, are reconstructed and compared with extant and fossil crocodylomorphs, which represent different lifestyles. Cranial bones of this specimen are identified as belonging to Hamadasuchus, with close affinities with Rukwasuchus yajabalijekundu, another peirosaurid from the 'middle' Cretaceous of Tanzania. The endocranial structures are comparable to those of R. yajabalijekundu but also to baurusuchids and sebecids (sebecosuchians). Paleobiological traits of Hamadasuchus, such as alert head posture, ecology, and behavior are explored for the first time, using quantitative metrics. The expanded but narrow semi-circular canals and enlarged pneumatization of the skull of Hamadasuchus are linked to a terrestrial lifestyle. Continuing work on the neuroanatomy of supposedly terrestrial crocodylomorphs needs to be broadened to other groups and will allow to characterize whether some internal structures are affected by the lifestyle of these organisms.
Asunto(s)
Caimanes y Cocodrilos , Neuroanatomía , Cráneo , Evolución Biológica , Fósiles , Cabeza/anatomía & histología , Marruecos , Cráneo/anatomía & histología , Caimanes y Cocodrilos/anatomía & histologíaRESUMEN
Background: Interferon alpha (IFN-α) can potently reduce human immunodeficiency virus type 1 (HIV-1) replication in tissue culture and animal models, but may also modulate residual viral reservoirs that persist despite suppressive antiretroviral combination therapy. However, mechanisms leading to viral reservoir reduction during IFN-α treatment are unclear. Methods: We analyzed HIV-1 gag DNA levels in CD4 T cells by digital droplet polymerase chain reaction and CD8 T-cell and natural killer (NK) cell phenotypes by flow cytometry in a cohort of antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients (n = 67) undergoing treatment for hepatitis C infection with pegylated IFN-α and ribavirin for an average of 11 months. Results: We observed that IFN-α treatment induced a significant decrease in CD4 T-cell counts (P < .0001), in CD4 T-cell-associated HIV-1 DNA copies (P = .002) and in HIV-1 DNA copies per microliter of blood (P < .0001) in our study patients. Notably, HIV-1 DNA levels were unrelated to HIV-1-specific CD8 T-cell responses. In contrast, proportions of total NK cells, CD56brightCD16- NK cells, and CD56brightCD16+ NK cells were significantly correlated with reduced levels of CD4 T-cell-associated HIV-1 DNA during IFN-α treatment, especially when coexpressing the activation markers NKG2D and NKp30. Conclusions: These data suggest that the reduction of viral reservoir cells during treatment with IFN-α is primarily attributable to antiviral activities of NK cells.
Asunto(s)
Coinfección/tratamiento farmacológico , ADN Viral/sangre , Infecciones por VIH/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Interferón-alfa/uso terapéutico , Células Asesinas Naturales/inmunología , Polietilenglicoles/uso terapéutico , Adulto , Anciano , Terapia Antirretroviral Altamente Activa , Estudios de Cohortes , Coinfección/inmunología , Coinfección/virología , Reservorios de Enfermedades/virología , Femenino , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Hepacivirus/efectos de los fármacos , Hepatitis C/virología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/uso terapéutico , Ribavirina/uso terapéutico , España , Carga Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
BACKGROUND: Notwithstanding 1 documented case of HIV-1 cure following allogeneic stem cell transplantation (allo-SCT), several subsequent cases of allo-SCT in HIV-1 positive individuals have failed to cure HIV-1 infection. The aim of our study was to describe changes in the HIV reservoir in a single chronically HIV-infected patient on suppressive antiretroviral therapy who underwent allo-SCT for treatment of acute lymphoblastic leukemia. METHODS AND FINDINGS: We prospectively collected peripheral blood mononuclear cells (PBMCs) by leukapheresis from a 55-year-old man with chronic HIV infection before and after allo-SCT to measure the size of the HIV-1 reservoir and characterize viral phylogeny and phenotypic changes in immune cells. At day 784 post-transplant, when HIV-1 was undetectable by multiple measures-including PCR measurements of both total and integrated HIV-1 DNA, replication-competent virus measurement by large cell input quantitative viral outgrowth assay, and in situ hybridization of colon tissue-the patient consented to an analytic treatment interruption (ATI) with frequent clinical monitoring. He remained aviremic off antiretroviral therapy until ATI day 288, when a low-level virus rebound of 60 HIV-1 copies/ml occurred, which increased to 1,640 HIV-1 copies/ml 5 days later, prompting reinitiation of ART. Rebounding plasma HIV-1 sequences were phylogenetically distinct from proviral HIV-1 DNA detected in circulating PBMCs before transplantation. The main limitations of this study are the insensitivity of reservoir measurements, and the fact that it describes a single case. CONCLUSIONS: allo-SCT led to a significant reduction in the size of the HIV-1 reservoir and a >9-month-long ART-free remission from HIV-1 replication. Phylogenetic analyses suggest that the origin of rebound virus was distinct from the viruses identified pre-transplant in the PBMCs.
Asunto(s)
Infecciones por VIH/terapia , Carga Viral/efectos de los fármacos , Antirretrovirales/uso terapéutico , VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Filogenia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Trasplante de Células Madre/métodos , Carga Viral/fisiologíaRESUMEN
During HIV infection, increased CD57 expression among CD8(+) T cells has been associated with immune senescence and defective immune responses. Interestingly, CD57-expressing CD8(+) T cells exhibit a dual profile, being simultaneously highly cytotoxic (terminally differentiated effectors) and poorly proliferative (replicative senescent). Recent publications point toward a positive role of CD57-expressing CD8(+) T cell subsets, presumably due to their high cytolytic activity. We further investigated the phenotype of CD57-expressing CD8(+) T cells in healthy donors and during HIV infection combining CD57 expression to Eomesodermin (EOMES), a T box transcription factor which determines, coordinately with T-bet, effector and memory CD8(+) T cell differentiation. We defined in healthy donors two functionally distinct CD57-expressing CD8(+) T cell subsets exhibiting different levels of EOMES expression: EOMES(hi) CD57(+) and EOMES(int) CD57(+) CD8(+) T cells. EOMES(hi) CD57(+) cells exhibited low cytotoxic activity but preserved proliferative capacity and interleukin 7 (IL-7) receptor expression, whereas EOMES(int) CD57(+) cells exhibited obvious cytotoxic functions and a more terminally differentiated phenotype. We next performed a similar analysis in different contexts of HIV infection: primary infected patients, long-term viremic patients, aviremic patients treated with antiretroviral therapy, and HIV controllers; we demonstrated a higher percentage of CD57-expressing cells in all HIV-infected patients regardless of virological status. When heterogeneity in EOMES expression among CD57 cells was taken into account, we detected significantly higher proportions of EOMES(hi) CD57(+) cells among HIV-specific and nonspecific CD8(+) T cells from HIV controllers than in aviremic antiretroviral-treated patients and viremic patients. Importantly, such a peculiar non-terminally differentiated EOMES(hi) CD57(+) phenotypic profile was associated with viral control. Importance: This study demonstrates that functional heterogeneity exists among CD57-expressing CD8 T cells, which include both terminally differentiated, highly cytotoxic EOMES(int) CD57(+) CD8(+) T cells and less differentiated EOMES(hi) CD57(+) CD8 T cells, which do not exhibit immediate cytotoxic functions but present high proliferative capacity. Interestingly, HIV controllers present a high proportion of EOMES(hi) CD57 cells among CD57-expressing HIV-specific CD8 T cells compared to both long-term viremic and aviremic antiretroviral therapy (ART)-treated patients, suggesting a beneficial role for this cell subset in viral control.
Asunto(s)
Antígenos CD57/inmunología , Linfocitos T CD8-positivos/virología , Infecciones por VIH/virología , Proteínas de Dominio T Box/metabolismo , Adulto , Infecciones por VIH/inmunología , Humanos , Persona de Mediana EdadRESUMEN
Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.
Asunto(s)
ARN Largo no Codificante , Virosis , Humanos , ARN Largo no Codificante/genética , Inmunidad Innata , Virosis/genética , Interferones , CitocinasRESUMEN
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Asunto(s)
COVID-19 , Animales , COVID-19/patología , SARS-CoV-2 , Mucosa Intestinal , Inflamación , PrimatesRESUMEN
Low monocyte (m)HLA-DR expression is associated with mortality in sepsis. G-286A∗rs3087456 polymorphism in promoter III of HLA class II transactivator (CIITA), the master regulator of HLA, has been associated with autoimmune diseases but its role in sepsis has never been demonstrated. In 203 patients in septic shock, GG genotype was associated with 28-day mortality and mHLA-DR remained low whereas it increased in patients with AA or AG genotype. In ex vivo cells, mHLA-DR failed to augment in GG in comparison with AG or AA genotype on exposure to IFN-γ. Promoter III transcript levels were similar in control monocytes regardless of genotype and exposure to IFN-γ. Promoter III activity was decreased in GG genotype in monocyte cell line but restored after stimulation with IFN-γ. Hereby, we demonstrated that G-286A∗rs3087456 significantly impact mHLA-DR expression in patients with septic shock in part through CIITA promoter III activity, that can be rescued using IFN-γ.
RESUMEN
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Asunto(s)
Colon/virología , Células Dendríticas/virología , Recto/virología , Semen/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral/fisiología , Animales , Colon/metabolismo , Citocinas/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/fisiología , Leucocitos/metabolismo , Leucocitos/patología , Leucocitos/virología , Macaca mulatta , Masculino , Recto/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Técnicas de Cultivo de TejidosRESUMEN
BACKGROUND: HIV-1 sexual transmission occurs mostly through infected semen, which contains both free virions and infected leukocytes. Transmission initiated by infected cells has been shown by several in vitro and in vivo studies and a reduced capacity of broadly neutralizing antibodies (bNAbs) to inhibit cell-to-cell transmission has also been reported. However, due to limitations of available experimental models, there is yet no clarity to which extend bNAbs can prevent transmission mediated by semen leukocytes. METHODS: We developed a novel in vitro assay to measure cell-cell transmission that makes use of splenocytes or CD45+ semen leukocytes collected from acutely SHIV162P3-infected cynomolgus macaques. A panel of 11 bNAbs was used either alone or in combination to assess their inhibitory potential against both cell-free and cell-cell infection. FINDINGS: Splenocytes and semen leucocytes displayed a similar proportion of CD4+T-cell subsets. Either cell type transferred infection in vitro to target TZM-bl cells and PBMCs. Moreover, infection of macaques was achieved following intravaginal challenge with splenocytes. The anti-N-glycans/V3 loop bNAb 10-1074 was highly efficient against cell-associated transmission mediated by infected spleen cells and its potency was maintained when transmission was mediated by CD45+ semen leukocytes. INTERPRETATION: These results support the use of bNAbs in preventative or therapeutic studies aiming to block transmission events mediated not only by free viral particles but also by infected cells. Our experimental system could be used to predict in vivo efficacy of bNAbs. FUNDING: This work was funded by the ANRS and the European Commission.
Asunto(s)
Anticuerpos ampliamente neutralizantes/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , Semen/virología , Animales , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Macaca fascicularis/virología , Semen/efectos de los fármacosRESUMEN
Zika virus (ZIKV) is a mosquito-borne pathogen with increasing public health significance. To characterize immune responses to ZIKV, here we examine transcriptional signatures of CD4 T, CD8 T, B, and NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from three individuals with ZIKV infection. While gene expression patterns from most cell subsets display signs of impaired antiviral immune activity, pDCs from infected host have distinct transcriptional response associated with activation of innate immune recognition and type I interferon signaling pathways, but downregulation of key host factors known to support ZIKV replication steps; meanwhile, pDCs exhibit a unique expression pattern of gene modules that are correlated with alternative cell populations, suggesting collaborative interactions between pDCs and other immune cells, particularly B cells. Together, these results point towards a discrete but integrative function of pDCs in the human immune responses to ZIKV infection.
Asunto(s)
Células Dendríticas/inmunología , Infección por el Virus Zika/inmunología , Adulto , Animales , Linfocitos B/virología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Culicidae , Células Dendríticas/virología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Células Asesinas Naturales/virología , Leucocitos Mononucleares/virología , Monocitos/metabolismo , Monocitos/virología , Células Mieloides/virología , Transcripción Genética , Replicación Viral , Virus Zika/inmunología , Infección por el Virus Zika/virologíaRESUMEN
Chromosomal integration of genome-intact HIV-1 sequences into the host genome creates a reservoir of virally infected cells that persists throughout life, necessitating indefinite antiretroviral suppression therapy. During effective antiviral treatment, the majority of these proviruses remain transcriptionally silent, but mechanisms responsible for viral latency are insufficiently clear. Here, we used matched integration site and proviral sequencing (MIP-Seq), an experimental approach involving multiple displacement amplification of individual proviral species, followed by near-full-length HIV-1 next-generation sequencing and corresponding chromosomal integration site analysis to selectively map the chromosomal positions of intact and defective proviruses in 3 HIV-1-infected individuals undergoing long-term antiretroviral therapy. Simultaneously, chromatin accessibility and gene expression in autologous CD4+ T cells were analyzed by assays for transposase-accessible chromatin using sequencing (ATAC-Seq) and RNA-Seq. We observed that in comparison to proviruses with defective sequences, intact HIV-1 proviruses were enriched for non-genic chromosomal positions and more frequently showed an opposite orientation relative to host genes. In addition, intact HIV-1 proviruses were preferentially integrated in either relative proximity to or increased distance from active transcriptional start sites and to accessible chromatin regions. These studies strongly suggest selection of intact proviruses with features of deeper viral latency during prolonged antiretroviral therapy, and may be informative for targeting the genome-intact viral reservoir.
Asunto(s)
Antirretrovirales/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , VIH-1/genética , Provirus/genética , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cromosomas Humanos/virología , Femenino , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Provirus/metabolismo , Factores de TiempoRESUMEN
DESIGN: This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60âmgâ×â2 weekly) therapy. METHODS: We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000âcopies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS: A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; Pâ=â0.34). No difference in time to rebound was observed between the ATI arms (log rank Pâ=â0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION: A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION: TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , ADN/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/aislamiento & purificación , Factores Inmunológicos/uso terapéutico , Receptor Toll-Like 9/agonistas , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD4-Positivos/virología , ADN/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Femenino , Humanos , Factores Inmunológicos/efectos adversos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Carga Viral , Adulto JovenRESUMEN
Zika virus (ZIKV) is a reemerging flavivirus causing an ongoing pandemic and public health emergency worldwide. There are currently no effective vaccines or specific therapy for Zika infection. Rapid, low-cost diagnostics for mass screening and early detection are of paramount importance in timely management of the infection at the point-of-care (POC). The current Zika diagnostics are laboratory-based and cannot be implemented at the POC particularly in resource-limited settings. Here, we develop a nanoparticle-enhanced viral lysate electrical sensing assay for Zika virus detection on paper microchips with printed electrodes. The virus is isolated from biological samples using antibodies and labeled with platinum nanoparticles (PtNPs) to enhance the electrical signal. The captured ZIKV-PtNP complexes are lysed using a detergent to release the electrically charged molecules associated with the intact virus and the PtNPs on the captured viruses. The released charged molecules and PtNPs change the electrical conductivity of the solution, which can be measured on a cellulose paper microchip with screen-printed microelectrodes. The results confirmed a highly specific detection of ZIKV in the presence of other non-targeted viruses, including closely related flaviviruses such as dengue virus-1 and dengue virus-2 with a detection limit down to 101 virus particles per µl. The developed assay is simple, rapid, and cost-effective and has the potential for POC diagnosis of viral infections and treatment monitoring.
Asunto(s)
Técnicas Electroquímicas , Procedimientos Analíticos en Microchip , Nanopartículas , Infección por el Virus Zika/diagnóstico , Virus Zika/aislamiento & purificación , Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus del Dengue , Electrodos , Humanos , PapelRESUMEN
Zika virus (ZIKV) infection is an emerging pandemic threat to humans that can be fatal in newborns. Advances in digital health systems and nanoparticles can facilitate the development of sensitive and portable detection technologies for timely management of emerging viral infections. Here we report a nanomotor-based bead-motion cellphone (NBC) system for the immunological detection of ZIKV. The presence of virus in a testing sample results in the accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion in H2O2 solution. Then the virus concentration is detected in correlation with the change in beads motion. The developed NBC system was capable of detecting ZIKV in samples with virus concentrations as low as 1 particle/µL. The NBC system allowed a highly specific detection of ZIKV in the presence of the closely related dengue virus and other neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus. The NBC platform technology has the potential to be used in the development of point-of-care diagnostics for pathogen detection and disease management in developed and developing countries.
Asunto(s)
Teléfono Celular , Nanopartículas del Metal/química , Platino (Metal)/química , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Humanos , Sistemas de Atención de Punto , Virus Zika/inmunologíaRESUMEN
Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection.
Asunto(s)
Células Dendríticas/metabolismo , Transcriptoma , Replicación Viral , Infección por el Virus Zika/metabolismo , Adulto , Línea Celular , Células Cultivadas , Células Dendríticas/virología , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Virus Zika/fisiología , Infección por el Virus Zika/genética , Tirosina Quinasa del Receptor AxlRESUMEN
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Asunto(s)
Genoma Viral/inmunología , VIH-1/fisiología , Células TH1/inmunología , Células TH1/virología , Latencia del Virus/inmunología , Adulto , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines.
Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Proteoglicanos de Heparán Sulfato/inmunología , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Activación de Linfocitos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/inmunologíaRESUMEN
BACKGROUND: HIV controllers (HIC) are rare HIV-1-infected patients who exhibit spontaneous viral control. HIC have high frequency of CD38-/HLA-DR+ HIV-specific CD8+ T cells. Here we examined the role of this subset in HIC status. MATERIALS AND METHODS: We compared CD38-/HLA-DR+ CD8+ T cells with the classical CD38+/HLA-DR+ activated phenotype in terms of 1) their activation status, reflected by CD69, CD25, CD71, CD40 and Ki67 expression, 2) functional parameters: Bcl-2 expression, proliferative capacity, and IFN-γ and IL-2 production, and 3) cytotoxic activity. We also investigated how this particular profile is generated. RESULTS: Compared to CD38+/HLA-DR+ cells, CD38-/HLA-DR+ cells exhibited lower expression of several activation markers, better survival capacity (Bcl-2 MFI, 367 [134-462] vs 638 [307-747], Pâ=â0.001), higher frequency of polyfunctional cells (15% [7%-33%] vs 21% [16%-43%], Pâ=â0.0003), greater proliferative capacity (0-fold [0-2] vs 3-fold [2]-[11], Pâ=â0.007), and higher cytotoxicity in vitro (7% [3%-11%] vs 13% [6%-22%], Pâ=â0.02). The CD38-/HLA-DR+ profile was preferentially generated in response to low viral antigen concentrations. CONCLUSIONS: These data highlight the role of CD38-/HLA-DR+ HIV-specific CD8+ T cell cytotoxicity in HIC status and provide insights into the mechanism by which they are generated. Induction of this protective CD8+ subset may be important for vaccine strategies.
Asunto(s)
ADP-Ribosil Ciclasa 1/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Antígenos HLA-DR/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Antígenos CD/inmunología , Estudios de Casos y Controles , Células Cultivadas , Femenino , Citometría de Flujo , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Humanos , Inmunofenotipificación , Activación de Linfocitos , Masculino , Persona de Mediana EdadRESUMEN
Machimosaurus was a large-bodied genus of teleosaurid crocodylomorph, considered to have been durophagous/chelonivorous, and which frequented coastal marine/estuarine ecosystems during the Late Jurassic. Here, we revise the genus based on previously described specimens and revise the species within this genus. We conclude that there were three European Machimosaurus species and another taxon in Ethiopia. This conclusion is based on numerous lines of evidence: craniomandibular, dental and postcranial morphologies; differences in estimated total body length; geological age; geographical distribution; and hypothetical lifestyle. We re-diagnose the type species Machimosaurus hugii and limit referred specimens to only those from Upper Kimmeridgian-Lower Tithonian of Switzerland, Portugal and Spain. We also re-diagnose Machimosaurus mosae, demonstrate that it is an available name and restrict the species to the uppermost Kimmeridgian-lowermost Tithonian of northeastern France. We re-diagnose and validate the species Machimosaurus nowackianus from Harrar, Ethiopia. Finally, we establish a new species, Machimosaurus buffetauti, for the Lower Kimmeridgian specimens of France and Germany (and possibly England and Poland). We hypothesize that Machimosaurus may have been analogous to the Pliocene-Holocene genus Crocodylus in having one large-bodied taxon suited to traversing marine barriers and additional, geographically limited taxa across its range.