Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hepatol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960374

RESUMEN

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

2.
J Med Virol ; 96(2): e29439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294104

RESUMEN

Hepatitis B virus (HBV) infection is a serious global health problem. After the viruses infect the human body, the host can respond to the virus infection by coordinating various cellular responses, in which mitochondria play an important role. Evidence has shown that mitochondrial proteins are involved in host antiviral responses. In this study, we found that the overexpression of TIM22 and TIM29, the members of the inner membrane translocase TIM22 complex, significantly reduced the level of intracellular HBV DNA and RNA and secreted HBV surface antigens and E antigen. The effects of TIM22 and TIM29 on HBV replication and transcription is attributed to the reduction of core promoter activity mediated by the increased expression of SRSF1 which acts as a suppressor of HBV replication. This study provides new evidence for the critical role of mitochondria in the resistance of HBV infection and new targets for the development of treatment against HBV infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Factores de Empalme Serina-Arginina , Humanos , Antígenos e de la Hepatitis B/genética , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Factores de Empalme Serina-Arginina/metabolismo , Replicación Viral , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo
3.
EMBO J ; 38(15): e101964, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31267557

RESUMEN

The IGF1R signaling is important in the malignant progression of cancer. However, overexpression of IGF1R has not been properly assessed in HCC. Here, we revealed that GSTZ1-1, the enzyme in phenylalanine/tyrosine catabolism, is downregulated in HCC, and its expression was negatively correlated with IGF1R. Mechanistically, GSTZ1-1 deficiency led to succinylacetone accumulation, alkylation modification of KEAP1, and NRF2 activation, thus promoting IGF1R transcription by recruiting SP1 to its promoter. Moreover, inhibition of IGF1R or NRF2 significantly inhibited tumor-promoting effects of GSTZ1 knockout in vivo. These findings establish succinylacetone as an oncometabolite, and GSTZ1-1 as an important tumor suppressor by inhibiting NRF2/IGF1R axis in HCC. Targeting NRF2 or IGF1R may be a promising treatment approach for this subset HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Dietilnitrosamina/efectos adversos , Regulación hacia Abajo , Glutatión Transferasa/genética , Heptanoatos/metabolismo , Neoplasias Hepáticas/patología , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Experimentales , Pronóstico , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Análisis de Supervivencia
4.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748603

RESUMEN

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , Adaptación al Huésped , Visón/inmunología , Mutación , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/genética , Animales , Sitios de Unión , COVID-19/inmunología , COVID-19/terapia , COVID-19/transmisión , COVID-19/virología , Femenino , Humanos , Inmunización Pasiva/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Visón/virología , Simulación de Dinámica Molecular , Países Bajos/epidemiología , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Adulto Joven , Sueroterapia para COVID-19
5.
J Med Virol ; 95(12): e29254, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018242

RESUMEN

Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Antivirales/farmacología , ADN Circular , ADN Viral/genética , Hepatitis B/genética , Virus de la Hepatitis B/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Ubiquitinación , Replicación Viral
6.
J Med Virol ; 95(1): e28271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321566

RESUMEN

In this study, we investigated the mechanism of hepatitis B virus (HBV)-enveloped particle release. Specifically, we used preS1 as a bait protein to screen host proteins using mass spectroscopy, with the results of immunofluorescence, western blot, co-immunoprecipitation, isothermal titration calorimetry, and pull-down assays identifying glucose-regulated protein (GRP)78 as a specific target for preS1 binding. We employed transcriptome sequencing, enzyme-linked immunosorbent assays, and particle gel assays to investigate the mechanism of GRP78-mediated positive regulation of HBV-enveloped particle release. Additionally, we performed phage-display, surface plasmon resonance, and molecular-docking assays to assess peptides inhibiting enveloped-particle release. We found that HBV upregulated GRP78 expression in liver cell lines and the serum of patients with chronic hepatitis B. Furthermore, GRP78 promoted the release of HBV-enveloped particles in vitro and in vivo within an HBV transgenic mouse model. Moreover, we identified interactions of preS1 peptides with GRP78 via hydrogen bonding and hydrophobic interactions, which effectively inhibited its interaction with HBV-enveloped particles and their subsequent release. These findings provide novel insights regarding HBV virion release, and demonstrated that GRP78 interacted with preS1 to positively regulate the release of HBV-enveloped particles, suggesting GRP78 as a potential therapeutic target for inhibiting HBV infection.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Hepatitis B , Animales , Ratones , Virus de la Hepatitis B/fisiología , Proteínas , Péptidos , Virión , Antígenos de Superficie de la Hepatitis B/química
7.
J Med Virol ; 95(4): e28719, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37185839

RESUMEN

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunidad Innata , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de la Nucleocápside de Coronavirus/metabolismo
8.
J Med Virol ; 95(10): e29189, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855689

RESUMEN

Infectious diseases remain a major global issue in public health. It is important to develop rapid, sensitive, and accurate diagnostic methods to detect pathogens and their mutations. Cas12f1 is an exceptionally compact RNA-guided nuclease and have the potential to fulfill the clinical needs. Based on the interaction between crRNA-SSDNA binary sequence and Cas12f1, here, we addressed the essential features that determine the recognition ability of CRISPR-Cas12f1 single-nucleotide polymorphism (SNP), such as the length of spacer region and the base pairing region that determines the trans-cleavage of ssDNA. A fine-tuning spacer design strategy is also proposed to enhance the SNP recognition capability of CRISPR-Cas12f1. The optimized spacer confers the Cas12f1 system a strong SNP identification capability for viral or bacterial drug-resistance mutations, with a specificity ratio ranging from 19.63 to 110.20 and an admirable sensitivity up to 100  copy/µL. Together, the spacer screening and CRISPR-Cas12f1 based SNP identification method, is sensitive and versatile, and will have a wide application prospect in pathogen DNA mutation diagnosis and other mutation profiling.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Polimorfismo de Nucleótido Simple , Humanos , ARN/genética , ADN de Cadena Simple/genética , Mutación
9.
J Med Virol ; 95(3): e28578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36846971

RESUMEN

Hepatitis B surface antigen (HBsAg) loss and seroconversion, which is considered as functional cure of chronic Hepatitis B virus (HBV) infection, is rarely achieved even after long-term antiviral treatments. Therefore, new antiviral strategies interfering with other HBV replication steps are required, especially those that could efficiently inhibit HBsAg production. Here, we identified novel anti-HBV compounds that could potently block HBsAg expression from cccDNA by screening a natural compound library derived from Chinese traditional medical plants by a novel screening strategy. The combination of ELISA assay detecting the HBsAg and real-time PCR detecting HBV RNAs as indicator for cccDNA transcriptional activity were used. The antiviral activity of a candidate compound and underlying mechanism were evaluated in HBV-infected cells and a humanized liver mouse model. Herein, we selected a highly effective low-cytotoxic compound sphondin, which could effectively inhibit both intracellular HBsAg production and HBV RNAs levels. Moreover, we found that sphondin markedly inhibited cccDNA transcriptional activity without affecting cccDNA level. Mechanistic study found sphondin preferentially bound to HBx protein by residue Arg72, which led to increased 26S proteasome-mediated degradation of HBx. Sphondin treatment significantly reduced the recruitment of HBx to cccDNA, which subsequently led to inhibition of cccDNA transcription and HBsAg expression. The absence of HBx or R72A mutation potently abrogated the antiviral effect induced by sphondin in HBV-infected cells. Collectively, sphondin may be considered as a novel and natural antiviral agent directly targeting HBx protein, which effectively inhibited cccDNA transcription and HBsAg expression.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Animales , Ratones , Antígenos de Superficie de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Antivirales/uso terapéutico , ADN Viral/genética , ADN Circular , Replicación Viral
10.
Hepatology ; 75(4): 847-865, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626132

RESUMEN

BACKGROUND AND AIMS: The mechanism underlying HCC metastasis remains unclear, many oncogenes are known to regulate this process. However, the role of alternative splicing (AS) in pro-metastatic HCC is poorly understood. APPROACH AND RESULTS: By performing RNA sequencing on nine pairs of primary HCC tissues with extrahepatic metastasis (EHMH) and nine pairs of metastasis-free HCC (MFH) tissues, we depicted the AS landscape in HCC and found a higher frequency of AS events in EHMH compared with MFH. Moreover, 28 differentially expressed splicing regulators were identified in EHMH compared with MFH. Among these, DEAD-box RNA helicase 17 (DDX17) was significantly up-regulated in EHMH and was strongly associated with patient outcome. Functional studies indicated that DDX17 knockout inhibited the degradation of the extracellular matrix, and diminished the invasive ability of HCC cells. A significant reduction in lung metastasis induced by DDX17 deficiency was also demonstrated in a diethylnitrosamine-induced DDX17HKO mouse model. Mechanistically, high DDX17 induced intron 3 retention of PXN-AS1 and produced a transcript (termed PXN-AS1-IR3). The transcript PXN-AS1-IR3 acted as an important promoter of HCC metastasis by inducing MYC transcription activation via recruiting the complex of testis expressed 10 and p300 to the MYC enhancer region, which led to transcriptional activation of several metastasis-associated downstream genes. Finally, the PXN-AS1-IR3 level was significantly higher in serum and HCC tissues with extrahepatic metastasis. CONCLUSIONS: DDX17 and PXN-AS1-IR3 act as important metastatic promoters by modulating MYC signaling, suggesting that DDX17 and PXN-AS1-IR3 may be potential prognostic markers for metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular , ARN Helicasas DEAD-box , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Empalme Alternativo , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , MicroARNs/genética , Metástasis de la Neoplasia , Oncogenes , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Transducción de Señal
11.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175611

RESUMEN

Hepatocellular carcinoma (HCC), the major type of liver cancer, causes a high annual mortality worldwide. RAD51 is the critical recombinase responsible for homologous recombination (HR) repair in DNA damage. In this study, we identified that RAD51 was upregulated in HCC and that RAD51 silencing or inhibition reduced the proliferation, migration, and invasion of HCC cells and enhanced cell apoptosis and DNA damage. HCC cells with the combinatorial treatments of RAD51 siRNA or inhibitor and sorafenib demonstrated a synergistic effect in inhibiting HCC cell proliferation, migration, and invasion, as well as inducing cell apoptosis and DNA damage. Single RAD51 silencing or sorafenib reduced RAD51 protein expression and weakened HR efficiency, and their combination almost eliminated RAD51 protein expression and inhibited HR efficiency further. An in vivo tumor model confirmed the RAD51 inhibitor's antitumor activity and synergistic antitumor activity with sorafenib in HCC. RNA-Seq and gene set enrichment analysis (GSEA) in RAD51-inactivated Huh7 cells indicated that RAD51 knockdown upregulated cell apoptosis and G1/S DNA damage checkpoint pathways while downregulating mitotic spindle and homologous recombination pathways. Our findings suggest that RAD51 inhibition exhibits antitumor activities in HCC and synergizes with sorafenib. Targeting RAD51 may provide a novel therapeutic approach in HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Recombinasa Rad51/genética , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
J Med Virol ; 94(12): 5691-5701, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35906179

RESUMEN

Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Citocinas , Humanos , Inmunoglobulina A , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Vacunas de Productos Inactivados
13.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35927536

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Asunto(s)
COVID-19 , Aminopeptidasas , COVID-19/epidemiología , COVID-19/genética , China/epidemiología , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Antígenos de Histocompatibilidad Menor , Polimorfismo de Nucleótido Simple , SARS-CoV-2/genética
14.
J Nanobiotechnology ; 20(1): 27, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991617

RESUMEN

BACKGROUND: Currently, there are no curative drugs for hepatitis B virus (HBV). Complete elimination of HBV covalently closed circular DNA (cccDNA) is key to the complete cure of hepatitis B virus infection. The CRISPR/Cas9 system can directly destroy HBV cccDNA. However, a CRISPR/Cas9 delivery system with low immunogenicity and high efficiency has not yet been established. Moreover, effective implementation of precise remote spatiotemporal operations in CRISPR/Cas9 is a major limitation. RESULTS: In this work, we designed NIR-responsive biomimetic nanoparticles (UCNPs-Cas9@CM), which could effectively deliver Cas9 RNP to achieve effective genome editing for HBV therapy. HBsAg, HBeAg, HBV pgRNA and HBV DNA along with cccDNA in HBV-infected cells were found to be inhibited. These findings were confirmed in HBV-Tg mice, which did not exhibit significant cytotoxicity and minimal off-target DNA damage. CONCLUSIONS: The UCNPs-based biomimetic nanoplatforms achieved the inhibition of HBV replication via CRISPR therapy and it is a potential system for efficient treatment of human HBV diseases.


Asunto(s)
Materiales Biomiméticos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Hepatitis B/terapia , Nanopartículas , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/efectos de la radiación , Técnicas de Transferencia de Gen , Virus de la Hepatitis B , Rayos Infrarrojos , Ratones , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/efectos de la radiación
15.
J Nanobiotechnology ; 20(1): 399, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064407

RESUMEN

BACKGROUND: Effective therapeutics and vaccines for coronavirus disease 2019 (COVID-19) are currently lacking because of the mutation and immune escape of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on the propagation characteristics of SARS-CoV-2, rapid and accurate detection of complete virions from clinical samples and the environment is critical for assessing infection risk and containing further COVID-19 outbreaks. However, currently applicable methods cannot achieve large-scale clinical application due to factors such as the high viral load, cumbersome virus isolation steps, demanding environmental conditions, and long experimental periods. In this study, we developed an immuno molecular detection method combining capture of the viral spike glycoprotein with monoclonal antibodies and nucleic acid amplification via quantitative reverse transcription PCR to rapidly and accurately detect complete virions. RESULTS: After constructing a novel pseudovirus, screening for specific antibodies, and optimizing the detection parameters, the assay achieved a limit of detection of 9 × 102 transduction units/mL of viral titer with high confidence (~ 95%) and excellent stability against human serum and common virus/pseudovirus. The coefficients of variation were 1.0 ~ 2.0% for intra-assay and inter-assay analyses, respectively. Compared with reverse transcription-PCR, the immunomolecular method more accurately quantified complete virions. SARS-CoV-2/pseudovirus was more stable on plastic and paper compared with aluminum and copper in the detection of SARS-CoV-2 pseudovirus under different conditions. Complete virions were detected up to 96 h after they were applied to these surfaces (except for copper), although the titer of the virions was greatly reduced. CONCLUSION: Convenient, inexpensive, and accurate complete virus detection can be applied to many fields, including monitoring the infectivity of convalescent and post-discharge patients and assessing high-risk environments (isolation rooms, operating rooms, patient living environments, and cold chain logistics). This method can also be used to detect intact virions, including Hepatitis B and C viruses, human immunodeficiency virus, influenza, and the partial pulmonary virus, which may further improve the accuracy of diagnoses and facilitate individualized and precise treatments.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Cuidados Posteriores , COVID-19/diagnóstico , Cobre , Humanos , Alta del Paciente , SARS-CoV-2 , Virión
16.
Clin Infect Dis ; 73(3): e531-e539, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32745196

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS: Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS: SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS: These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pandemias
17.
J Hepatol ; 74(3): 522-534, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32987030

RESUMEN

BACKGROUND & AIMS: Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS: We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS: Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS: Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY: Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.


Asunto(s)
Antivirales/administración & dosificación , ADN Circular/metabolismo , Dicumarol/administración & dosificación , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteolisis/efectos de los fármacos , Transactivadores/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , ADN Circular/aislamiento & purificación , Modelos Animales de Enfermedad , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/virología , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/genética , Transfección , Resultado del Tratamiento , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
18.
J Hum Genet ; 66(3): 261-271, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32939015

RESUMEN

The Ebbinghaus illusion (EI) is an optical illusion of relative size perception that reflects the contextual integration ability in the visual modality. The current study investigated the genetic basis of two subtypes of EI, EI overestimation, and EI underestimation in humans, using quantitative genomic analyses. A total of 2825 Chinese adults were tested on their magnitudes of EI overestimation and underestimation using the method of adjustment, a standard psychophysical protocol. Heritability estimation based on common single nucleotide polymorphisms (SNPs) revealed a moderate heritability (34.3%) of EI overestimation but a nonsignificant heritability of EI underestimation. A meta-analysis of two phases (phase 1: n = 1986, phase 2: n = 839) of genome-wide association study (GWAS) discovered 1969 and 58 SNPs reaching genome-wide significance for EI overestimation and EI underestimation, respectively. Among these SNPs, 55 linkage-disequilibrium-independent SNPs were associated with EI overestimation in phase 1 with genome-wide significance and their associations could be confirmed in phase 2 cohort. Gene-based analyses found seven genes to be associated with EI overestimation at the genome-wide level, two from meta-analysis, and five from classical two-stage analysis. Overall, this study provided consistent evidence for a substantial genetic basis of the Ebbinghaus illusion.


Asunto(s)
Estudio de Asociación del Genoma Completo , Ilusiones Ópticas/fisiología , Percepción del Tamaño/fisiología , Adolescente , Adulto , Pueblo Asiatico/genética , Etnicidad/genética , Femenino , Genotipo , Humanos , Individualidad , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Corteza Visual/anatomía & histología , Adulto Joven
19.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34128977

RESUMEN

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Asunto(s)
Catálisis , ADN Circular/metabolismo , Histona Metiltransferasas/genética , Histonas/metabolismo , Sirtuinas/metabolismo , ADN Viral/genética , Hepatitis B/prevención & control , Hepatitis B/terapia , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/prevención & control , Humanos , Sirtuinas/genética , Transcripción Genética/genética , Replicación Viral/genética
20.
Cell Microbiol ; 22(3): e13148, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31829498

RESUMEN

Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH-box RNA helicase 9 (DHX9) expression by repressing proteasome-dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx-mediated DHX9 upregulation is essential for HBV DNA replication.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Transactivadores/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/genética , Replicación del ADN , ADN Viral , Regulación de la Expresión Génica , Células HEK293 , Células Hep G2 , Hepatitis B/genética , Hepatitis B/virología , Interacciones Microbiota-Huesped , Humanos , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Regulación hacia Arriba , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA