Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 23(7)2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30004444

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in various cancers. In its basal state, the structure of ALK is in an autoinhibitory form stabilized by its A-loop, which runs from the N-lobe to the C-lobe of the kinase. Specifically, the A-loop adopts an inhibitory pose with its proximal A-loop helix (αAL-helix) to anchor the αC-helix orientation in an inactive form in the N-lobe; the distal portion of the A-loop is packed against the C-lobe to block the peptide substrate from binding. Upon phosphorylation of the first A-loop tyrosine (Y1278), the αAL-helix unfolds; the distal A-loop detaches from the C-lobe and reveals the P+1 pocket that accommodates the residues immediately after their phosphorylation, and ALK is activated accordingly. Recently, two neuroblastoma mutants, F1174L and R1275Q, have been determined to cause ALK activation without phosphorylation on Y1278. Notably, F1174 is located on the C-terminus of the αC-helix and away from the A-loop, whereas R1275 sits on the αAL-helix. In this molecular modeling study, we investigated the structural impacts of F1174L and R1275Q that lead to the gain-of-function event. Wild-type ALK and ALK with phosphorylated Y1278 were also modeled for comparison. Our modeling suggests that the replacement of F1174 with a smaller residue, namely leucine, moves the αC-helix and αAL-helix into closer contact and further distorts the distal portion of the A-loop. In wild-type ALK, R1275 assumes the dual role of maintaining the αAL-helix⁻αC-helix interaction in an inactive form and securing αAL-helix conformation through the D1276⁻R1275 interaction. Accordingly, mutating R1275 to a glutamine reorients the αC-helix to an active form and deforms the entire A-loop. In both F1174L and R1275Q mutants, the A-loop rearranges itself to expose the P+1 pocket, and kinase activity resumes.


Asunto(s)
Mutación/genética , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Dominio AAA/genética , Quinasa de Linfoma Anaplásico , Leucina/genética , Modelos Moleculares , Fosforilación/genética , Conformación Proteica en Hélice alfa/genética
2.
Sci Rep ; 9(1): 11390, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388026

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that has been recognized as a therapeutic target for EML4-ALK fusion-positive nonsmall cell lung cancer (NSCLC) treatment using type I kinase inhibitors such as crizotinib to take over the ATP binding site. According to Shaw's measurements, ALK carrying G1202R mutation shows reduced response to crizotinib (IC50 = 382 nM vs. IC50 = 20 nM for wild-type), whereas L1198F mutant is more responsive (IC50 = 0.4 nM). Interestingly, the double mutant L1198F/G1202R maintains a similar response (IC50 = 31 nM) to the wild-type. Herein we conducted molecular modeling simulations to elucidate the varied crizotinib sensitivities in three mutants carrying L1198F and/or G1202R. Both L1198 and G1202 are near the ATP pocket. Mutation G1202R causes steric hindrance that blocks crizotinib accessibility, which greatly reduces efficacy, whereas mutation L1198F enlarges the binding pocket entrance and hydrophobically interacts with crizotinib to enhance sensitivity. With respect to the double mutant L1198F/G1202R, F1198 indirectly pulls R1202 away from the binding entrance and consequently alleviates the steric obstacle introduced by R1202. These results demonstrated how the mutated residues tune the crizotinib response and may assist kinase inhibitor development especially for ALK G1202R, analogous to the ROS1 G2302R and MET G1163R mutations that are also resistant to crizotinib treatment in NSCLC.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/ultraestructura , Sitios de Unión/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/uso terapéutico , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Simulación de Dinámica Molecular , Dominios Proteicos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética
3.
J Mol Graph Model ; 79: 35-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29132019

RESUMEN

Oxygen homeostasis in normal and tumor cells is mediated by hypoxia-inducible factors (HIFs), which are active as heterodimer complexes, such as HIF-2α-aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF-1α-ARNT. A series of mutations on the interfaces between HIF-2α and ARNT and on the domain-domain interface within HIF-2α has been reported to exert varying effects on HIF-2α-ARNT dimerization. In the present study, molecular dynamic simulations were conducted to evaluate HIF-2α mutations, namely R171A, V192D, and R171A/V192D, which are not involved in the interaction with ARNT but impede HIF-2α-ARNT dimerization. Our results indicate that these mutations induct local conformation leading to a shortened (by V192D) or widened (by R171A and R171A/V192D) Y91-E346 separation distance, where E346 and Y91 are located on the HIF-2α and interact with ARNT according to electrostatic and geometrical shape complementarity, respectively.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Modelos Moleculares , Mutación , Multimerización de Proteína , Alelos , Sustitución de Aminoácidos , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Humanos , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA