Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.511
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 54(12): 2784-2794.e6, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34626548

RESUMEN

Self-reactive B cell progenitors are eliminated through central tolerance checkpoints, a process thought to be restricted to the bone marrow in mammals. Here, we identified a consecutive trajectory of B cell development in the meninges of mice and non-human primates. The meningeal B cells were located predominantly at the dural sinuses, where endothelial cells expressed essential niche factors to support B cell development. Parabiosis experiments together with lineage tracing showed that meningeal developing B cells were replenished continuously from hematopoietic stem cell (HSC)-derived progenitors via a circulation-independent route. Autoreactive immature B cells that recognized myelin oligodendrocyte glycoprotein (MOG), a central nervous system-specific antigen, were eliminated specifically from the meninges. Furthermore, genetic deletion of the Mog gene restored the self-reactive B cell population in the meninges. These findings identify the meninges as a distinct reservoir for B cell development, allowing in situ negative selection to ensure a locally non-self-reactive immune repertoire.


Asunto(s)
Células Dendríticas/inmunología , Células Madre Hematopoyéticas/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Meninges/inmunología , Células Plasmáticas/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Antígeno B7-1/metabolismo , Antígenos CD28/metabolismo , Autorrenovación de las Células , Supervivencia Celular , Células Cultivadas , Humanos , Inmunidad Humoral , Memoria Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ratones , Ratones Endogámicos C57BL
2.
Trends Genet ; 40(5): 383-386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637270

RESUMEN

Artificial intelligence (AI) in omics analysis raises privacy threats to patients. Here, we briefly discuss risk factors to patient privacy in data sharing, model training, and release, as well as methods to safeguard and evaluate patient privacy in AI-driven omics methods.


Asunto(s)
Inteligencia Artificial , Genómica , Humanos , Genómica/métodos , Privacidad , Difusión de la Información
3.
Plant Cell ; 36(3): 688-708, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37936326

RESUMEN

Aluminum (Al) stress triggers the accumulation of hydrogen peroxide (H2O2) in roots. However, whether H2O2 plays a regulatory role in aluminum resistance remains unclear. In this study, we show that H2O2 plays a crucial role in regulation of Al resistance, which is modulated by the mitochondrion-localized pentatricopeptide repeat protein REGULATION OF ALMT1 EXPRESSION 6 (RAE6). Mutation in RAE6 impairs the activity of complex I of the mitochondrial electron transport chain, resulting in the accumulation of H2O2 and increased sensitivity to Al. Our results suggest that higher H2O2 concentrations promote the oxidation of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1), an essential transcription factor that promotes Al resistance, thereby promoting its degradation by enhancing the interaction between STOP1 and the F-box protein RAE1. Conversely, decreasing H2O2 levels or blocking the oxidation of STOP1 leads to greater STOP1 stability and increased Al resistance. Moreover, we show that the thioredoxin TRX1 interacts with STOP1 to catalyze its chemical reduction. Thus, our results highlight the importance of H2O2 in Al resistance and regulation of STOP1 stability in Arabidopsis (Arabidopsis thaliana).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
Nature ; 600(7887): 59-63, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666339

RESUMEN

Mare volcanics on the Moon are the key record of thermo-chemical evolution throughout most of lunar history1-3. Young mare basalts-mainly distributed in a region rich in potassium, rare-earth elements and phosphorus (KREEP) in Oceanus Procellarum, called the Procellarum KREEP Terrane (PKT)4-were thought to be formed from KREEP-rich sources at depth5-7. However, this hypothesis has not been tested with young basalts from the PKT. Here we present a petrological and geochemical study of the basalt clasts from the PKT returned by the Chang'e-5 mission8. These two-billion-year-old basalts are the youngest lunar samples reported so far9. Bulk rock compositions have moderate titanium and high iron contents  with KREEP-like rare-earth-element and high thorium concentrations. However, strontium-neodymium isotopes indicate that these basalts were derived from a non-KREEP mantle source. To produce the high abundances of rare-earth elements and thorium, low-degree partial melting and extensive fractional crystallization are required. Our results indicate that the KREEP association may not be a prerequisite for young mare volcanism. Absolving the need to invoke heat-producing elements in their source implies a more sustained cooling history of the lunar interior to generate the Moon's youngest melts.

5.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557119

RESUMEN

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Asunto(s)
COVID-19 , Endosomas , Lisosomas , Tetraspanina 24 , Animales , Lisosomas/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Ratones , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Endosomas/metabolismo , Ratones Noqueados , Vasculitis/metabolismo , Ratones Endogámicos C57BL , SARS-CoV-2 , Inflamación/metabolismo , Inflamación/patología , Sepsis/metabolismo
6.
Nature ; 579(7798): 270-273, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32015507

RESUMEN

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Neumonía Viral/epidemiología , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/sangre , Betacoronavirus/metabolismo , Betacoronavirus/ultraestructura , COVID-19 , Línea Celular , China/epidemiología , Chlorocebus aethiops , Femenino , Genoma Viral/genética , Humanos , Masculino , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Homología de Secuencia de Ácido Nucleico , Síndrome Respiratorio Agudo Grave , Células Vero
7.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28065600

RESUMEN

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Linfocitos T CD4-Positivos/enzimología , Colitis/enzimología , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT3/metabolismo , Acetilación , Aminoácido Oxidorreductasas/deficiencia , Aminoácido Oxidorreductasas/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Catálisis , Diferenciación Celular , Núcleo Celular/enzimología , Proliferación Celular , Colitis/genética , Colitis/inmunología , Modelos Animales de Enfermedad , Genotipo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Dominios Proteicos , Multimerización de Proteína , Interferencia de ARN , Factor de Transcripción STAT3/genética , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células Th17/enzimología , Células Th17/inmunología , Transcripción Genética , Transfección
8.
Genomics ; 116(1): 110775, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163573

RESUMEN

AIM: To assess the differential expression profiles of exosome-derived microRNA (miRNA) and reveal their potential functions in patients with acute viral myocarditis (AVMC). MATERIALS & METHODS: Peripheral blood samples were collected from 9 patients diagnosed with AVMC and 9 healthy controls (HC) in the Affiliated Hospital of Qingdao University from July 2021 to September 2022. The exosomal miRNA expression were tested using RNA high-throughput sequencing. We conducted the GO and KEGG functional analysis to predict the potential molecular, biological functions and related signaling pathways of miRNAs in exosomes. Target genes of exosomal miRNAs were predicted and miRNA-target gene network was mapped using gene databases. Differentially expressed exosomal miRNAs were selected and their expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) to verify the sequencing results. RESULTS: P < 0.05 and Fold Change>2 were considered as cut-off value to screen miRNAs that were differently expressed. This study identified 14 upregulated and 14 downregulated exosome-derived miRNAs. GO and KEGG analysis showed that differentially expressed miRNAs may be related to ß-catenin binding, DNA transcription activities, ubiquitin ligase, PI3K-Akt, FoxO, P53, MAPK, and etc.. The target genes of differentially expressed miRNAs were predicted using gene databases. Real-time PCR confirmed the upregulation of hsa-miR-548a-3p and downregulation of hsa-miR-500b-5p in AVMC. CONCLUSIONS: Hsa-miR-548a-3p and hsa-miR-500b-5p could serve as a promising biomarker of AVMC. Exosomal miRNAs may have substantial roles in the mechanisms of AVMC.


Asunto(s)
MicroARNs , Miocarditis , Virosis , Humanos , MicroARNs/metabolismo , Miocarditis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Regulación hacia Abajo
9.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898417

RESUMEN

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Asunto(s)
Arabidopsis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas , Senescencia de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Herbicidas/farmacología , Herbicidas/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Senescencia de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Transcriptoma , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Cell Biochem ; 125(3): e30521, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38226525

RESUMEN

Despite surgical treatment combined with multidrug therapy having made some progress, chemotherapy resistance is the main cause of recurrence and death of gastric cancer (GC). Gastric cancer mesenchymal stem cells (GCMSCs) have been reported to be correlated with the limited efficacy of chemotherapy in GC, but the mechanism of GCMSCs regulating GC resistance needs to be further studied. The gene set enrichment analysis (GSEA) was performed to explore the glycolysis-related pathways heterogeneity across different cell subpopulations. Glucose uptake and lactate production assays were used to evaluate the importance of B7H3 expression in GCMSCs-treated GC cells. The therapeutic efficacy of oxaliplatin (OXA) and paclitaxel (PTX) was determined using CCK-8 and colony formation assays. Signaling pathways altered by GCMSCs-CM were revealed by immunoblotting. The expression of TNF-α in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by western blot analysis and qPCR. Our results showed that the OXA and PTX resistance of GC cells were significantly enhanced in the GCMSCs-CM treated GC cells. Acquired OXA and PTX resistance was characterized by increased cell viability for OXA and PTX, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of cleaved caspase-3 and Bax expression, and increased levels of Bcl-2, HK2, MDR1, and B7H3 expression. Blocking TNF-α in GCMSCs-CM, B7H3 knockdown or the use of 2-DG, a key enzyme inhibitor of glycolysis in GC cells suppressed the OXA and PTX resistance of GC cells that had been treated with GCMSCs-CM. This study shows that GCMSCs-CM derived TNF-α could upregulate the expression of B7H3 of GC cells to promote tumor chemoresistance. Our results provide a new basis for the treatment of GC.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Quimioterapia Combinada , Glucólisis , Leprostáticos/farmacología , Células Madre Mesenquimatosas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Am Chem Soc ; 146(12): 8508-8519, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38382542

RESUMEN

Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.

12.
Int J Cancer ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924042

RESUMEN

Several life-prolonging therapies for metastatic castration-resistant prostate cancer (mCRPC) are available, including radium-223 dichloride (223Ra), which was approved based on phase 3 data demonstrating improved overall survival (OS) and a favorable safety profile. To date, real-world evidence for 223Ra use in Taiwan is from three studies of <50 patients. This observational study (NCT04232761) enrolled male patients with histologically/cytologically confirmed mCRPC with bone metastases from centers across Taiwan. 223Ra was prescribed as part of routine practice by investigators. Patients with prior 223Ra treatment were excluded. The primary objective was to assess 223Ra safety; secondary objectives evaluated efficacy parameters, including OS. Overall, 224 patients were enrolled. Most patients had an Eastern Cooperative Oncology Group performance status of 0/1 (79.0%) and ≤20 bone metastases (69.2%); no patients had visceral metastases. 223Ra was first- or second-line therapy in 23.2% and 47.7% of patients, respectively. The total proportion of patients who received 5-6 223Ra cycles was 68.8%; this proportion was greater with first-line use (84.3%) than second- (65.7%) or third-/fourth-line use (64.1%). More chemotherapy-naïve patients (61.9%) completed the 6-cycle 223Ra treatment than chemotherapy-exposed patients (56.7%). Any-grade treatment-emergent adverse events (TEAEs) and serious TEAEs occurred in 54.0% and 28.6% of patients, respectively, while 12% experienced 223Ra-related adverse events. Median OS was 15.7 months (95% confidence interval 12.13-19.51); patients receiving 5-6 223Ra injections and earlier 223Ra use had longer OS than those receiving fewer injections and later 223Ra use. 223Ra provides a well-tolerated and effective treatment for Taiwanese patients with mCRPC and bone metastases.

13.
Apoptosis ; 29(5-6): 799-815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347337

RESUMEN

PANoptosis is a form of inflammatory programmed cell death that is regulated by the PANoptosome. This PANoptosis possesses key characteristics of pyroptosis, apoptosis, and necroptosis, yet cannot be fully explained by any of these cell death modes. The unique nature of this cell death mechanism has garnered significant interest. However, the specific role of PANoptosis-associated features in gastric cancer (GC) is still uncertain. Patients were categorized into different PAN subtypes based on the expression of genes related to the PANoptosome. We conducted a systematic analysis to investigate the variations in prognosis and tumor microenvironment (TME) among these subtypes. Furthermore, we developed a risk score, called PANoptosis-related risk score (PANS), which is constructed from genes associated with the PANoptosis. We comprehensively analyzed the correlation between PANS and GC prognosis, TME, immunotherapy efficacy and chemotherapeutic drug sensitivity. Additionally, we performed in vitro experiments to validate the impact of Keratin 7 (KRT7) on GC. We identified two PAN subtypes (PANcluster A and B). PANoptosome genes were highly expressed in PANcluster A. PANcluster A has the characteristics of favorable prognosis, abundant infiltration of anti-tumor lymphocytes, and sensitivity to immunotherapy, thus it was categorized as an immune-inflammatory type. Meanwhile, our constructed PANS can effectively predict the prognosis and immune efficacy of GC. Patients with low PANS have a good prognosis, and have the characteristics of high tumor mutation load (TMB), high microsatellite instability (MSI), low tumor purity and sensitivity to immunotherapy. In addition, PANS can also identify suitable populations for different chemotherapy drugs. Finally, we confirmed that KRT7 is highly expressed in GC. Knocking down the expression of KRT7 significantly weakens the proliferation and migration abilities of GC cells. The models based on PANoptosis signature help to identify the TME features of GC and can effectively predict the prognosis and immune efficacy of GC. Furthermore, the experimental verification results of KRT7 provide theoretical support for anti-tumor treatment.


Asunto(s)
Inmunoterapia , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/diagnóstico , Humanos , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Queratina-7/genética , Queratina-7/metabolismo , Apoptosis/genética
14.
Antimicrob Agents Chemother ; : e0042824, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899925

RESUMEN

Delafloxacin, a fluoroquinolone antibiotic to treat skin infections, exhibits a broad-spectrum antimicrobial activity. The first randomized, open-label phase I clinical trial was conducted to assess the safety and pharmacokinetics (PK) of intravenous delafloxacin in the Chinese population. A population pharmacokinetic (PopPK) model based on the clinical trial was conducted by NONMEM software. Monte Carlo simulation was performed to evaluate the antibacterial effects of delafloxacin at different doses in different Chinese populations. The PK characteristics of delafloxacin were best described by a three-compartment model with mixed linear and nonlinear clearance. Body weight was included as a covariate in the model. We simulated the AUC0-24h in a steady state at five doses in patient groups of various weights. The results indicated that for patients weighing 70 kg and treated with methicillin-resistant Staphylococcus aureus (MRSA) infections, a minimum dose of 300 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, suggesting an ideal bactericidal effect. For patients weighing less than 60 kg, a dose of 200 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, also suggesting an ideal bactericidal effect. Additionally, this trial demonstrated the high safety of delafloxacin in single-dose and multiple-dose groups of Chinese. Delafloxacin (300 mg, q12h, iv) was recommended for achieving optimal efficacy in Chinese bacterial skin infections patients. To ensure optimal efficacy, an individualized dose of 200 mg (q12h, iv) could be advised for patients weighing less than 60 kg, and 300 mg (q12h, iv) for those weighing more than 60 kg.

15.
Mol Med ; 30(1): 98, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943069

RESUMEN

BACKGROUND: L-theanine is a unique non-protein amino acid in tea that is widely used as a safe food additive. We investigated the cardioprotective effects and mechanisms of L-theanine in myocardial ischemia-reperfusion injury (MIRI). METHODS: The cardioprotective effects and mechanisms of L-theanine and the role of Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling were investigated in MIRI mice using measures of cardiac function, oxidative stress, and apoptosis. RESULTS: Administration of L-theanine (10 mg/kg, once daily) suppressed the MIRI-induced increase in infarct size and serum creatine kinase and lactate dehydrogenase levels, as well as MIRI-induced cardiac apoptosis, as evidenced by an increase in Bcl-2 expression and a decrease in Bax/caspase-3 expression. Administration of L-theanine also decreased the levels of parameters reflecting oxidative stress, such as dihydroethidium, malondialdehyde, and nitric oxide, and increased the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD) in ischemic heart tissue. Further analysis showed that L-theanine administration suppressed the MIRI-induced decrease of phospho-JAK2 and phospho-STAT3 in ischemic heart tissue. Inhibition of JAK2 by AG490 (5 mg/kg, once daily) abolished the cardioprotective effect of L-theanine, suggesting that the JAK2/STAT3 signaling pathway may play an essential role in mediating the anti-I/R effect of L-theanine. CONCLUSIONS: L-theanine administration suppresses cellular apoptosis and oxidative stress in part via the JAK2/STAT3 signaling pathway, thereby attenuating MIRI-induced cardiac injury. L-theanine could be developed as a potential drug to alleviate cardiac damage in MIRI.


Asunto(s)
Apoptosis , Glutamatos , Janus Quinasa 2 , Daño por Reperfusión Miocárdica , Estrés Oxidativo , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/etiología , Apoptosis/efectos de los fármacos , Glutamatos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico
16.
Anal Chem ; 96(23): 9317-9324, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38818541

RESUMEN

Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.


Asunto(s)
Microelectrodos , Bacterias Grampositivas/aislamiento & purificación , Bacterias Gramnegativas/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Vancomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/análisis , Polimixina B/química , Polimixina B/farmacología , Espectroscopía Dieléctrica
17.
Small ; 20(23): e2310325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191783

RESUMEN

Foreign body reaction (FBR) is a prevalent yet often overlooked pathological phenomenon, particularly within the field of biomedical implantation. The presence of FBR poses a heavy burden on both the medical and socioeconomic systems. This review seeks to elucidate the protein "fingerprint" of implant materials, which is generated by the physiochemical properties of the implant materials themselves. In this review, the activity of macrophages, the formation of foreign body giant cells (FBGCs), and the development of fibrosis capsules in the context of FBR are introduced. Additionally, the relationship between various implant materials and FBR is elucidated in detail, as is an overview of the existing approaches and technologies employed to alleviate FBR. Finally, the significance of implant components (metallic materials and non-metallic materials), surface CHEMISTRY (charge and wettability), and physical characteristics (topography, roughness, and stiffness) in establishing the protein "fingerprint" of implant materials is also well documented. In conclusion, this review aims to emphasize the importance of FBR on implant materials and provides the current perspectives and approaches in developing implant materials with anti-FBR properties.


Asunto(s)
Reacción a Cuerpo Extraño , Prótesis e Implantes , Reacción a Cuerpo Extraño/etiología , Humanos , Prótesis e Implantes/efectos adversos , Animales , Materiales Biocompatibles/química , Propiedades de Superficie , Células Gigantes de Cuerpo Extraño/patología
18.
J Transl Med ; 22(1): 433, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720361

RESUMEN

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Doxorrubicina/efectos adversos , Cardiotoxicidad/etiología , Animales , Disbiosis , Trasplante de Microbiota Fecal
19.
Plant Physiol ; 192(2): 1498-1516, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36823690

RESUMEN

Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.


Asunto(s)
Arabidopsis , Oryza , Monoéster Fosfórico Hidrolasas/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Raíces de Plantas/metabolismo
20.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724987

RESUMEN

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Dinaminas , Células Endoteliales , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Circulación Coronaria , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Dinaminas/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Células Endoteliales/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA