Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(12): 2315-2334, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35271815

RESUMEN

ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.


Asunto(s)
ADP-Ribosilación , Reparación del ADN , Cromatina/genética , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Procesamiento Proteico-Postraduccional , ARN/metabolismo
2.
Mol Cell ; 79(6): 934-949.e14, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32822587

RESUMEN

Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.


Asunto(s)
ADP-Ribosilación/genética , Adipogénesis/genética , Histonas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Adenosina Difosfato Ribosa/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Línea Celular , Daño del ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Fosforilación/genética , ARN Nucleolar Pequeño/genética
3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646855

RESUMEN

Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.


Asunto(s)
Metamorfosis Biológica , Ovario , Reproducción , Animales , Femenino , Reproducción/genética , Metamorfosis Biológica/genética , Ovario/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vitelogénesis/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
4.
Proc Natl Acad Sci U S A ; 120(13): e2210796120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947513

RESUMEN

Rewiring of redox metabolism has a profound impact on tumor development, but how the cellular heterogeneity of redox balance affects leukemogenesis remains unknown. To precisely characterize the dynamic change in redox metabolism in vivo, we developed a bright genetically encoded biosensor for H2O2 (named HyPerion) and tracked the redox state of leukemic cells in situ in a transgenic sensor mouse. A H2O2-low (HyPerion-low) subset of acute myeloid leukemia (AML) cells was enriched with leukemia-initiating cells, which were endowed with high colony-forming ability, potent drug resistance, endosteal rather than vascular localization, and short survival. Significantly high expression of malic enzymes, including ME1/3, accounted for nicotinamide adenine dinucleotide phosphate (NADPH) production and the subsequent low abundance of H2O2. Deletion of malic enzymes decreased the population size of leukemia-initiating cells and impaired their leukemogenic capacity and drug resistance. In summary, by establishing an in vivo redox monitoring tool at single-cell resolution, this work reveals a critical role of redox metabolism in leukemogenesis and a potential therapeutic target.


Asunto(s)
Peróxido de Hidrógeno , Leucemia Mieloide Aguda , Ratones , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oxidación-Reducción , Ratones Transgénicos , Resistencia a Antineoplásicos/genética
5.
Am J Pathol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762117

RESUMEN

The evaluation of morphologic features, such as inflammation, gastric atrophy, and intestinal metaplasia, is crucial for diagnosing gastritis. However, artificial intelligence analysis for nontumor diseases like gastritis is limited. Previous deep learning models have omitted important morphologic indicators and cannot simultaneously diagnose gastritis indicators or provide interpretable labels. To address this, an attention-based multi-instance multilabel learning network (AMMNet) was developed to simultaneously achieve the multilabel diagnosis of activity, atrophy, and intestinal metaplasia with only slide-level weak labels. To evaluate AMMNet's real-world performance, a diagnostic test was designed to observe improvements in junior pathologists' diagnostic accuracy and efficiency with and without AMMNet assistance. In this study of 1096 patients from seven independent medical centers, AMMNet performed well in assessing activity [area under the curve (AUC), 0.93], atrophy (AUC, 0.97), and intestinal metaplasia (AUC, 0.93). The false-negative rates of these indicators were only 0.04, 0.08, and 0.18, respectively, and junior pathologists had lower false-negative rates with model assistance (0.15 versus 0.10). Furthermore, AMMNet reduced the time required per whole slide image from 5.46 to only 2.85 minutes, enhancing diagnostic efficiency. In block-level clustering analysis, AMMNet effectively visualized task-related patches within whole slide images, improving interpretability. These findings highlight AMMNet's effectiveness in accurately evaluating gastritis morphologic indicators on multicenter data sets. Using multi-instance multilabel learning strategies to support routine diagnostic pathology deserves further evaluation.

6.
Plant Physiol ; 195(1): 598-616, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38319742

RESUMEN

Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Pigmentación , Proteínas de Plantas , Factores de Transcripción , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética , Antocianinas/metabolismo , Filogenia , Alelos , Genes de Plantas , Datos de Secuencia Molecular , Secuencia de Aminoácidos , Color
7.
Blood ; 142(10): 903-917, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37319434

RESUMEN

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteína 1 Inhibidora de la Diferenciación , Leucemia Mieloide Aguda , Animales , Ratones , Proteína 7 Similar a la Angiopoyetina/genética , Proteína 7 Similar a la Angiopoyetina/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo
8.
Proteomics ; : e2300350, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491406

RESUMEN

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

9.
BMC Genomics ; 25(1): 68, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233753

RESUMEN

BACKGROUND: Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships. RESULT: The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya). CONCLUSION: The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Teorema de Bayes , Genómica/métodos , ADN
10.
BMC Med ; 22(1): 4, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166913

RESUMEN

BACKGROUND: We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS: This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS: The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS: The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05023941.


Asunto(s)
Mal de Altura , Precondicionamiento Isquémico , Humanos , Mal de Altura/prevención & control , Mal de Altura/diagnóstico , Acetazolamida , Estudios Prospectivos , Enfermedad Aguda , Hipoxia/prevención & control
11.
Small ; 20(1): e2305119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653595

RESUMEN

Rampant dendrite growth, electrode passivation and severe corrosion originate from the uncontrolled ions migration behavior of Zn2+ , SO4 2- , and H+ , which are largely compromising the aqueous zinc ion batteries (AZIBs) performance. Exploring the ultimate strategy to eliminate all the Zn anode issues is challenging but urgent at present. Herein, a fluorinated separator interface (PVDF@GF) is constructed simply by grafting the polyvinylidene difluoride (PVDF) on the GF surface to realize high-performance AZIBs. Experimental and theoretical studies reveal that the strong interaction between C─F bonds in the PVDF and Zn2+ ions enables evenly redistributed Zn2+ ions concentration at the electrode interface and accelerates the Zn transportation kinetics, leading to homogeneous and fast Zn deposition. Furthermore, the electronegative separator interface can spontaneously repel the SO4 2- and anchor H+ ions to alleviate the passivation and corrosion. Accordingly, the Zn|Zn symmetric cell with PVDF@GF harvests a superior cycling stability of 500 h at 10 mAh cm-2 , and the Zn|VOX full cell delivers 76.8% capacity retention after 1000 cycles at 2 A g-1 . This work offers an all-round solution and provides new insights for the design of advanced separators with ionic sieve function toward stable and reversible Zn metal anode chemistry.

12.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566191

RESUMEN

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transactivadores , Animales , Humanos , Ratones , Doxorrubicina , Proteína p300 Asociada a E1A , Interleucina-3 , Subunidad alfa del Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transactivadores/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38499061

RESUMEN

BACKGROUND: Non-neuronal cholinergic system (NNCS) contributes to various inflammatory airway diseases. However, the role of NNCS in severe asthma (SA) remains largely unexplored. OBJECTIVE: To explore airway NNCS in SA. METHODS: In this prospective cohort study based on the Australasian Severe Asthma Network in a real-world setting, patients with SA (n = 52) and non-SA (n = 104) underwent clinical assessment and sputum induction. The messenger RNA (mRNA) levels of NNCS components and proinflammatory cytokines in the sputum were detected using real-time quantitative polymerase chain reaction, and the concentrations of acetylcholine (Ach)-related metabolites were evaluated using liquid chromatography coupled with tandem mass spectrometry. Asthma exacerbations were prospectively investigated during the next 12 months. The association between NNCS and future asthma exacerbations was also analyzed. RESULTS: Patients with SA were less controlled and had worse airway obstruction, a lower bronchodilator response, higher doses of inhaled corticosteroids, and more add-on treatments. The sputum mRNA levels of NNCS components, such as muscarinic receptors M1R-M5R, OCT3, VACHT, and ACHE; proinflammatory cytokines; and Ach concentration in the SA group were significantly higher than those in the non-SA group. Furthermore, most NNCS components positively correlated with non-type (T) 2 inflammatory profiles, such as sputum neutrophils, IL8, and IL1B. In addition, the mRNA levels of sputum M2R, M3R, M4R, M5R, and VACHT were independently associated with an increased risk of moderate-to-severe asthma exacerbations. CONCLUSION: This study indicated that the NNCS was significantly activated in SA, leading to elevated Ach and was associated with clinical features, non-T2 inflammation, and future exacerbations of asthma, highlighting the potential role of the NNCS in the pathogenesis of SA. CLINICAL TRIAL REGISTRATION: ChiCTR-OOC-16009529 (http://www.chictr.org.cn).

14.
Gastric Cancer ; 27(4): 701-713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649672

RESUMEN

BACKGROUND: The family history of gastric cancer holds important implications for cancer surveillance and prevention, yet existing evidence predominantly comes from case-control studies. We aimed to investigate the association between family history of gastric cancer and gastric cancer risk overall and by various subtypes in Asians in a prospective study. METHODS: We included 12 prospective cohorts with 550,508 participants in the Asia Cohort Consortium. Cox proportional hazard regression was used to estimate study-specific adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between family history of gastric cancer and gastric cancer incidence and mortality, then pooled using random-effects meta-analyses. Stratified analyses were performed for the anatomical subsites and histological subtypes. RESULTS: During the mean follow-up of 15.6 years, 2258 incident gastric cancers and 5194 gastric cancer deaths occurred. The risk of incident gastric cancer was higher in individuals with a family history of gastric cancer (HR 1.44, 95% CI 1.32-1.58), similarly in males (1.44, 1.31-1.59) and females (1.45, 1.23-1.70). Family history of gastric cancer was associated with both cardia (HR 1.26, 95% CI 1.00-1.60) and non-cardia subsites (1.49, 1.35-1.65), and with intestinal- (1.48, 1.30-1.70) and diffuse-type (1.59, 1.35-1.87) gastric cancer incidence. Positive associations were also found for gastric cancer mortality (HR 1.30, 95% CI 1.19-1.41). CONCLUSIONS: In this largest prospective study to date on family history and gastric cancer, a familial background of gastric cancer increased the risk of gastric cancer in the Asian population. Targeted education, screening, and intervention in these high-risk groups may reduce the burden of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/genética , Masculino , Femenino , Incidencia , Asia/epidemiología , Estudios Prospectivos , Persona de Mediana Edad , Factores de Riesgo , Anciano , Adulto , Estudios de Seguimiento , Predisposición Genética a la Enfermedad
15.
Environ Sci Technol ; 58(2): 1236-1243, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38169373

RESUMEN

Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Piruvaldehído/química , Fotoquímica , Carbono , Aerosoles/análisis , Aminas , Glioxal , Agua/química , Concentración de Iones de Hidrógeno
16.
Environ Sci Technol ; 58(18): 7924-7936, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652049

RESUMEN

Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.


Asunto(s)
Aerosoles , Oxidación-Reducción , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Luz
17.
Environ Sci Technol ; 58(24): 10652-10663, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829825

RESUMEN

Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.5-3 days' OH exposure. While VOCs can only explain 10% of total SOA production, the contribution from I/SVOCs is 59%, with oxygenated I/SVOCs (O-I/SVOCs) taking up 20% of that contribution. O-I/SVOCs (e.g., benzylic or aliphatic aldehydes and ketones), as an obscured source, account for 16% of total nonmethane organic gas (NMOG) emission. More importantly, with the improvement in emission standards, the NMOG is effectively mitigated by 35% from China 4 to China 6, which is predominantly attributed to the decrease of VOCs. Real-time measurements of different NMOG components as well as SOA production further reveal that the current emission control measures, such as advances in engine and three-way catalytic converter (TWC) techniques, are effective in reducing the "light" SOA precursors (i.e., single-ring aromatics) but not for the I/SVOC emissions. Our results also highlight greater effects of O-I/SVOCs to SOA formation than previously observed and the urgent need for further investigation into their origins, i.e., incomplete combustion, lubricating oil, etc., which requires improvements in real-time molecular-level characterization of I/SVOC molecules and in turn will benefit the future design of control measures.


Asunto(s)
Aerosoles , Gasolina , Emisiones de Vehículos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/química , Compuestos Orgánicos/química
18.
Phys Chem Chem Phys ; 26(10): 8380-8389, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38404232

RESUMEN

The quest for high-performance solar cell absorbers has garnered significant attention in the field of photovoltaic research in recent years. To overcome the Shockley-Queisser (SQ) limit of ∼31% for single junction solar cell and realize higher power conversion efficiency, the concept of an intermediate band solar cell (IBSC) has been proposed. This involves the incorporation of an intermediate band (IB) to assist the three band-edge absorptions within the single absorber layer. BaSnS2 has an appropriate width of its forbidden gap in order to host an IB. In this work, doping of BaSnS2 was studied based on hybrid functional calculations. The results demonstrated that isolated and half-filled IBs were generated with suitable energy states in the band gap region after group-IIIA element (i.e., Al, Ga, and In) doping at Sn site. The theoretical efficiencies under one sun illumination of 39.0%, 44.3%, and 39.7% were obtained for 25% doping concentration of Al, Ga, and In, respectively; thus, larger than the single-junction SQ-limit. Furthermore, the dopants have lower formation energies when substituting the Sn site compare to occupying the Ba and S sites, and that helps realizing a proper IB with three band-edge absorptions. Therefore, group-IIIA element doped BaSnS2 is proposed as a high-efficiency absorber for IBSC.

19.
J Biochem Mol Toxicol ; 38(1): e23568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899695

RESUMEN

Numerous studies have shown that the M2 polarization of alveolar macrophages (AM) plays a protective role in acute lung injury (ALI). Mesenchymal stem cells (MSCs) secreted exosomes have been reported to be involved in inflammatory diseases by the effects of polarized M1/M2 macrophage populations. However, whether bone marrow mesenchymal stem cells (BMMSCs) derived exosomes could protect from ALI and its mechanisms are still unclear. Here, we explored the role of exosomes from BMMSC in rat AM polarization and the lipopolysaccharide- (LPS-) induced ALI rat model. Furthermore, the levels of exosomal miR-223 in BMMSCs were measured by RT-qPCR. Additionally, miR-223 mimics and its inhibitors were used to verify the vital role of miR-223 of BMMSCs-derived exosomes in the polarization of M2 macrophages. The results showed that BMMSCs-derived exosomes were taken up by the AM. Exosomes derived from BMMSCs promoted M2 polarization of AM in vitro. BMMSCs exosomes effectively mitigated pathological injuries, lung edema, and the inflammation of rats from LPS-induced ALI, accompanied by an increase of M2 polarization of AM in lung tissue. Interestingly, we also found that miR-223 was enriched in BMMSCs-derived exosomes, and overexpression of miR-223 in BMMSCs-derived exosomes promoted M2 polarization of AM while depressing miR-223 showed opposite effects in AM. The present study demonstrated that BMMSCs-derived exosomes triggered alveolar M2 polarization to improve inflammation by transferring miR-223, which may provide new therapeutic strategies in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Macrófagos Alveolares , Lipopolisacáridos/toxicidad , MicroARNs/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Inflamación
20.
Photodermatol Photoimmunol Photomed ; 40(3): e12972, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752300

RESUMEN

BACKGROUND: In previous studies, the 308-nm light-emitting diode (LED) has been proven safe and effective for treating vitiligo. However, direct comparisons between the 308-nm LED and 308-nm excimer lamp (308-nm MEL) for the treatment of vitiligo are lacking. OBJECTIVE: To compare the efficacy of the 308-nm LED and 308-nm MEL for treating nonsegmental stable vitiligo. PATIENTS AND METHODS: This randomized controlled trial was conducted between January 2018 and August 2023. Enrolled patients were randomly assigned to either the 308-nm LED or the 308-nm MEL groups, both receiving 16 treatment sessions. Adverse events that occurred during the treatment were documented. RESULTS: In total, 269 stable vitiligo patches from 174 patients completed the study. A total of 131 lesions were included in the 308-nm LED group, and 138 lesions were included in the 308-nm MEL group. After 16 treatment sessions, 38.17% of the vitiligo patches in the 308-nm LED group achieved repigmentation of at least 50% versus 38.41% in the 308-nm MEL group. The two devices exhibited similar results in terms of efficacy for a repigmentation of at least 50% (p = .968). The incidence of adverse effects with the two phototherapy devices was comparable (p = .522). CONCLUSIONS: Treatment of vitiligo with the 308-nm LED had a similar efficacy rate to the 308-nm MEL, and the incidence of adverse effects was comparable between the two devices.


Asunto(s)
Vitíligo , Humanos , Vitíligo/radioterapia , Vitíligo/terapia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adolescente , Láseres de Excímeros/uso terapéutico , Láseres de Excímeros/efectos adversos , Adulto Joven , Niño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA