Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Sci Technol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023504

RESUMEN

Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 µm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.

2.
Environ Sci Technol ; 57(43): 16340-16347, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37856081

RESUMEN

Frequent cycles of flooding and drainage in paddy soils lead to the reductive dissolution of iron (Fe) minerals and the reoxidation of Fe(II) species, all while generating a robust and consistent output of reactive oxygen species (ROS). In this study, we present a comprehensive assessment of the temporal and spatial variations in Fe species and ROS during the flooding-drainage process in a representative paddy soil. Our laboratory column experiments showed that a decrease in dissolved O2 concentration led to rapid Fe reduction below the water-soil interface, and aqueous Fe(II) was transformed into solid Fe(II) phases over an extended flooding time. As a result, the •OH production capacity of liquid phases was reduced while that of solid phases improved. The •OH production capacity of solid phases increased from 227-271 µmol kg-1 (within 1-11 cm depth) to 500-577 to 499-902 µmol kg-1 after 50 day, 3 month, and 1 year incubation, respectively. During drainage, dynamic •OH production was triggered by O2 consumption and Fe(II) oxidation. ROS-trapping film and in situ capture revealed that the soil surface was the active zone for intense H2O2 and •OH production, while limited ROS production was observed in the deeper soil layers (>5 cm) due to the limited oxygen penetration. These findings provide more insights into the complex interplay between dynamic Fe cycling and ROS production in the redox transition zones of paddy fields.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Radical Hidroxilo , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Oxidación-Reducción , Agua , Compuestos Ferrosos
3.
Environ Sci Technol ; 56(4): 2366-2377, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107264

RESUMEN

Silver ions (Ag+) directly emitted from industrial sources or released from manufactured Ag nanoparticles (AgNPs) in biosolid-amended soils have raised concern about the risk to ecosystems. However, our knowledge of Ag+ toxicity, internalization, and transformation mechanisms to bacteria is still insufficient. Here, we combine the advanced technologies of hyperspectral imaging (HSI) and single-particle inductively coupled plasma mass spectrometry to visualize the potential formed AgNPs inside the bacteria and evaluate the contributions of biological and non-biological processes in the uptake and transformation of Ag+ by Shewanella oneidensis MR-1. The results showed a dose-dependent toxicity of Ag+ to S. oneidensis MR-1 in the ferrihydrite bioreduction process, which was primarily induced by the actively internalized Ag. Moreover, both HSI and cross-section high-resolution transmission electron microscopy results confirmed that Ag inside the bacteria existed in the form of particulate. The Ag mass distribution in and around live and inactivated cells demonstrated that the uptake and transformation of Ag+ by S. oneidensis MR-1 were mainly via biological process. The bioaccumulation of Ag+ may be lethal to bacteria. A better understanding of the uptake and transformation of Ag+ in bacteria is central to predict and monitor the key factors that control Ag partitioning dynamics at the biointerface, which is critical to develop practical risk assessment and mitigation strategies.


Asunto(s)
Nanopartículas del Metal , Shewanella , Ecosistema , Nanopartículas del Metal/química , Plata/química
4.
Environ Sci Technol ; 55(9): 6001-6011, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819016

RESUMEN

Sulfide is one of the most abundant reductants in the subsurface environment, while pyrogenic carbon is a redox medium that widely exists in sulfide environment. Previous studies have found pyrogenic carbon can mediate the reductive degradation of organic pollutants under anoxic sulfide conditions; however, the scenario under oxic sulfide conditions has rarely been reported. In this study, we found that pyrogenic carbon can mediate hydroxyl radicals (•OH) generation from sulfide oxidation under dark oxic conditions. The accumulated •OH ranged from 2.07 to 101.90 µM in the presence of 5 mM Na2S and 100 mg L-1 pyrogenic carbon at pH 7.0 within 240 min. The Raman spectra and electrochemical cell experiments revealed that the carbon defects were the possible chemisorption sites for oxygen, while the graphite crystallites were responsible for the electron transfer from sulfide to O2 to generate H2O2 and •OH. Quenching experiments and degradation product identification showed that As(III) and sulfanilamide can be oxidized by the generated •OH. This research provides a new insight into the important role of pyrogenic carbon in redox reactions and dark •OH production.


Asunto(s)
Peróxido de Hidrógeno , Radical Hidroxilo , Carbono , Oxidación-Reducción , Sulfuros
5.
Water Res ; 256: 121573, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608618

RESUMEN

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Asunto(s)
Hidrógeno , Hierro , Hidrógeno/química , Hierro/química , Oxidación-Reducción
6.
J Nat Med ; 78(4): 1003-1012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38775895

RESUMEN

The practice of Chinese herbal medicines for the treatment of COVID-19 in China played an essential role for the control of mortality rate and reduction of recovery time. The iridoids is one of the main constituents of many heat-clearing and detoxifying Chinese medicines that were largely planted and frequently used in clinical practice. Twenty-three representative high content iridoids from several staple Chinese medicines were obtained and tested by a SARS-CoV-2 pseudo-virus entry-inhibition assay on HEK-293 T/ACE2 cells, a live HCoV-OC43 virus infection assay on HRT-18 cells, and a SARS-CoV-2 3CL protease inhibitory FRET assay followed by molecular docking simulation. The anti-pulmonary inflammation activities were further evaluated on a TNF-α induced inflammation model in A549 cells and preliminary SARs were concluded. The results showed that specnuezhenide (7), cornuside (12), neonuezhenide (15), and picroside III (21) exhibited promising antiviral activities, and neonuezhenide (15) could inhibit 3CL protease with an IC50 of 14.3 µM. Docking computation showed that compound 15 could bind to 3CL protease through a variety of hydrogen bonding and hydrophobic interactions. In the anti-pulmonary inflammation test, cornuside (12), aucubin (16), monotropein (17), and shanzhiside methyl ester (18) could strongly decrease the content of IL-1ß and IL-8 at 10 µM. Compound 17 could also upregulate the expression of the anti-inflammatory cytokine IL-10 significantly. The iridoids exhibited both anti-coronavirus and anti-pulmonary inflammation activities for their significance of existence in Chinese herbal medicines, which also provided a theoretical basis for their potential utilization in the pharmaceutical and food industries.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Iridoides , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Humanos , Iridoides/farmacología , Iridoides/química , Antivirales/farmacología , Antivirales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Células A549 , Células HEK293 , COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Coronavirus Humano OC43/efectos de los fármacos
7.
Phytochemistry ; 217: 113920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951561

RESUMEN

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Asunto(s)
Medicamentos Herbarios Chinos , Gentiana , Lignanos , Humanos , Gentiana/química , Lignanos/farmacología , Glucósidos/farmacología , Glucósidos/química , Medicamentos Herbarios Chinos/farmacología , Inflamación
8.
J Hazard Mater ; 457: 131799, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37302186

RESUMEN

Recently, hydroxyl radical (•OH) production during soil redox fluctuations has been increasingly reported, but the low efficiency of contaminant degradation is the barrier for engineering remediation. The widely distributed low-molecular-weight organic acids (LMWOAs) might greatly enhance •OH production due to their strong interactions with Fe(II) species, but it was less investigated. Herein, we found that LMWOAs amendment (i.e., oxalic acid (OA) and citric acid (CA)) significantly enhanced •OH production by 1.2 -19.5 times during oxygenation of anoxic paddy slurries. Compared with OA and acetic acid (AA) (78.4 -110.3 µM), 0.5 mM CA showed the highest •OH accumulation (140.2 µM) due to the elevated electron utilization efficiency derived from its strongest capacity for complexation. Besides, increasing CA concentrations (within 6.25 mM) dramatically enhanced the •OH production and imidacloprid (IMI) degradation (increased by 48.6%), and further decreased due to the extensive competition from excess CA. Compared to 0.5 mM CA, the synergistic effects of acidification and complexation induced by 6.25 mM CA rendered more formation of exchangeable Fe(II) that easily coordinated with CA, and thus significantly enhanced its oxygenation. This study proposed promising strategies for regulating natural attenuation of contaminants using LMWOAs in agricultural fields, especially soils with frequent occurrence of redox fluctuations.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37121946

RESUMEN

Neonicotinoids (NEOs) pesticides are widely used around the world, especially in the tropics with greater frequency and intensity. However, little is known about NEOs residue in drinking water of tropics. In this study, a highly efficient method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established for determining eight NEOs in source water and tap water of Hainan Island, China. The method adopted a high-throughput direct aqueous injection without sample concentration steps, with a rapid analyzing period of 5.0 min, method detection limits (MDLs) in the range of 0.84-1.82 ng/L and the average recoveries ranged from 83% to 116%. NEOs were detected in all source water samples and at an upper level as compared with other parts of China. The most frequently detected NEO was imidacloprid with a detection frequency of 94%, followed by clothianidin (88%) and thiamethoxam (78%), with maximum concentrations of 86.4, 164, and 188 ng/L, respectively. Moreover, seasonal and spatial variations had remarkable impacts on NEO contamination in source water. Drinking water treatment processes removed approximately 20% of NEOs from surface water. However, 90% of tap water samples contained at least one NEO, With 3 samples' concentration of single NEO exceeding the acceptable value recommended by the European Union (100 ng/L). Therefore, the risk of human exposure through drinking water was evaluated for 4 age group and 2 genders. Young children aged 9 months to 3 years old were found to have the highest risk, with the median exposure up to 4 times greater than teenagers and adults. Next, water intake is likely only a small part of the daily intake of these individuals, thus the potential health problems caused by NEOs present in the tap water of Hainan should not be ignored.

10.
Chemosphere ; 286(Pt 1): 131565, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34280832

RESUMEN

Hydroxyl radical (•OH) plays a critical role in driving organic pollutants degradation during redox fluctuations. Such processes have been frequently investigated in sedimentary environments, but rarely referred to the agricultural fields, such as paddy soils with frequent occurrence of redox fluctuations. Our findings demonstrated that extensive •OH (40.3-1061.4 µmol kg-1) was produced during oxygenation of anoxic paddy slurries under circumstance conditions. Wet chemical sequential extractions, Mössbauer spectra, and X-ray photoelectron spectroscopy characterizations collectively corroborated that 0.5 M HCl-extracted Fe(II) (i.e., surface-bound Fe and Fe in low-crystalline minerals) contributed to more •OH production than aqueous Fe2+. The produced •OH can efficiently induce the oxidative transformation of organic carbon and the degradation of imidacloprid (IMP), which in turn produced the by-products, such as IMP-urea, IMP-olefin, and 6-chloronicontinic acid, via •OH-attacking mechanisms. Quenching experiments showed that hydrogen peroxide (H2O2) was the important intermediate for •OH formation via Haber-Weiss mechanisms during oxygenation processes. These findings indicate that abundant •OH can be produced during the redox fluctuations of paddy soil, which might be of great significance to predict the removal of organic contaminants and the mineralization of organic carbon in paddy fields.


Asunto(s)
Radical Hidroxilo , Suelo , Peróxido de Hidrógeno , Neonicotinoides , Nitrocompuestos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA