Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(9): 942-953, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30111894

RESUMEN

The sensing of microbial genetic material by leukocytes often elicits beneficial pro-inflammatory cytokines, but dysregulated responses can cause severe pathogenesis. Genome-wide association studies have linked the gene encoding phospholipase D3 (PLD3) to Alzheimer's disease and have linked PLD4 to rheumatoid arthritis and systemic sclerosis. PLD3 and PLD4 are endolysosomal proteins whose functions are obscure. Here, PLD4-deficient mice were found to have an inflammatory disease, marked by elevated levels of interferon-γ (IFN-γ) and splenomegaly. These phenotypes were traced to altered responsiveness of PLD4-deficient dendritic cells to ligands of the single-stranded DNA sensor TLR9. Macrophages from PLD3-deficient mice also had exaggerated TLR9 responses. Although PLD4 and PLD3 were presumed to be phospholipases, we found that they are 5' exonucleases, probably identical to spleen phosphodiesterase, that break down TLR9 ligands. Mice deficient in both PLD3 and PLD4 developed lethal liver inflammation in early life, which indicates that both enzymes are needed to regulate inflammatory cytokine responses via the degradation of nucleic acids.


Asunto(s)
Células Dendríticas/fisiología , Endosomas/metabolismo , Exonucleasas/metabolismo , Hepatitis/genética , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Fosfolipasa D/metabolismo , Enfermedad de Alzheimer/genética , Animales , Artritis Reumatoide/genética , ADN de Cadena Simple/inmunología , Exonucleasas/genética , Estudio de Asociación del Genoma Completo , Humanos , Interferón gamma/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D/genética , Esclerodermia Sistémica/genética , Transducción de Señal , Receptor Toll-Like 9/metabolismo
2.
J Immunol ; 207(1): 344-351, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183368

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , Estudios de Cohortes , Humanos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Proc Natl Acad Sci U S A ; 117(37): 22920-22931, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32873644

RESUMEN

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs). The germline-targeting HIV immunogen eOD-GT8 60mer is currently in clinical trial as a candidate bnAb vaccine priming immunogen. To attempt to model human immune responses to the eOD-GT8 60mer, we tested each authentic naive human VRC01-class BCR mouse model under rare human physiological B cell precursor frequency conditions. B cells with high (HuGL18HL) or medium (HuGL17HL) affinity BCRs were primed, recruited to germinal centers, and they affinity matured, and formed memory B cells. Precursor frequency and affinity interdependently influenced responses. Taken together, these experiments utilizing authentic naive human VRC01-class BCRs validate a central tenet of germline-targeting vaccine design and extend the overall concept of the reverse vaccinology approach to vaccine development.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos/genética , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/farmacología , Antígenos CD4/inmunología , Técnicas de Sustitución del Gen/métodos , Centro Germinal/inmunología , Antígenos VIH , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Ratones , Ratones Endogámicos , Ratones Transgénicos , Células Precursoras de Linfocitos B/inmunología , Vacunación/métodos
4.
Anim Biotechnol ; 34(9): 4721-4729, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36927330

RESUMEN

Reproductive traits are essential economic traits in goats. This study aimed to analyze the relationship between single nucleotide polymorphisms (SNPs) within the genes of GLRB, GRIA2, and GASK1B, and reproductive traits (kidding traits and placental traits) in goats. We used the resequencing data of 150 Dazu Black Goats to perform correlation analysis with the average litter size. We screened thirteen SNPs loci in introns and then used the Sanger method to genotype the remaining 150 Dazu Black Goats. The results showed that a total of six SNPs were screened. Three SNPs related to litter size and live litter size (g.28985790T > G, g.28986352A > G, and g.28987976A > G); one SNP related to total cotyledon area (g.29203243G > A); two SNPs related to placental efficiency (g.30189055G > A and g.30193974C > T); one SNP associated with cotyledon support efficiency (g.30193974C > T). The qPCR results showed that GLRB, GRIA2, and GASK1B were all highly expressed in the udder, kidney, uterus, and ovary. It indicated that these three candidate genes might affect the reproductive traits, which could be used as candidate markers for reproductive traits in Dazu Black Goats. Moreover, association studies on a large scale are still needed to figure out what effect these SNPs have on reproductive traits.


Asunto(s)
Cabras , Placenta , Femenino , Embarazo , Animales , Cabras/genética , Reproducción/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Genotipo , Tamaño de la Camada/genética
5.
PLoS Pathog ; 16(12): e1009089, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275640

RESUMEN

Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential cross-neutralizing epitopes on SARS-like viruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , SARS-CoV-2/genética , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Variación Antigénica/genética , Reacciones Cruzadas , Cristalografía por Rayos X , Epítopos/genética , Epítopos/inmunología , Humanos , Mutación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología
6.
PLoS Pathog ; 16(8): e1008665, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32780770

RESUMEN

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Nanopartículas/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Epítopos/inmunología , Femenino , Infecciones por VIH/virología , Humanos , Inmunización , Nanopartículas/administración & dosificación , Conejos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
7.
Anim Biotechnol ; 33(5): 992-996, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33151107

RESUMEN

AMH, KISS1R and GDF9 genes play a vital role in human and animal reproduction and might be used as the genetic markers for the reproduction traits selection. The aim of this study was to screen the single nucleotide polymorphisms (SNPs) within the AMH, KISS1R and GDF9 genes and to determine the correlations between these SNPs and the litter size in goats. Nine single SNPs within these genes were used for genotyping of the 190 Dazu black goat populations by SNaPshot technique. The polymorphisms of nine SNPs within these genes were detected in Dazu black goats. The significant correlation was observed between one SNP (g.89172108A > C) within the AMH gene and the litter size of second born in Dazu black goats (p < 0.05). The SNP was located in exon 4 (XM_018050765.1) of the AMH gene and was one nonsynonymous substitution, which resulted in a change of an amino acid from Glutamine to Proline (Gln38Pro). These results suggested that the nonsynonymous SNP g.89172108A > C of AMH gene could be used as a potential genetic marker for Marker-assisted selection (MAS) in goats breeding programs.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Animales , Femenino , Marcadores Genéticos/genética , Genotipo , Glutamina/genética , Cabras/genética , Humanos , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple/genética , Embarazo , Prolina/genética , Receptores de Kisspeptina-1/genética
8.
Clin Chem ; 67(2): 404-414, 2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33084854

RESUMEN

BACKGROUND: It is unknown whether a positive serology result correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. METHODS: A neutralization assay was validated in a set of PCR-confirmed positive specimens and in a negative cohort. In addition, 9530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N = 164 individuals) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and neutralizing activity was determined. Neutralizing antibody titers (50% inhibitory dilution, ID50) were also longitudinally monitored in patients confirmed to have SARS-CoV-2 by PCR. RESULTS: The SARS-CoV-2 neutralization assay had a positive percentage agreement (PPA) of 96.6% with a SARS-CoV-2 PCR test and a negative percentage agreement (NPA) of 98.0% across 100 negative control individuals. ID50 neutralization titers positively correlated with all 3 clinical serology platforms. Longitudinal monitoring of hospitalized PCR-confirmed patients with COVID-19 demonstrated they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2 and 78.4%, respectively. CONCLUSIONS: These 3 clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in patients with COVID-19. All patients confirmed SARS-CoV-2 positive by PCR develop neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Análisis de Regresión , Estudios Retrospectivos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
9.
J Biol Chem ; 288(23): 16247-16261, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23612963

RESUMEN

Receptor interacting protein 3 (RIP3) is a protein kinase essential for TNF-induced necroptosis. Phosphorylation on Ser-227 in human RIP3 (hRIP3) is required for its interaction with human mixed lineage kinase domain-like (MLKL) in the necrosome, a signaling complex induced by TNF stimulation. RIP1 and RIP3 mediate necrosome aggregation leading to the formation of amyloid-like signaling complexes. We found that TNF induces Thr-231 and Ser-232 phosphorylation in mouse RIP3 (mRIP3) and this phosphorylation is required for mRIP3 to interact with mMLKL. Ser-232 in mRIP3 corresponds to Ser-227 in hRIP3, whereas Thr-231 is not conserved in hRIP3. Although the RIP3-MLKL interaction is required for necroptosis in both human and mouse cells, hRIP3 does not interact with mMLKL and mRIP3 cannot bind to hMLKL. The species specificity of the RIP3-MLKL interaction is primarily determined by the sequence differences in the phosphorylation sites and the flanking sequence around the phosphorylation sites in hRIP3 and mRIP3. It appears that the RIP3-MLKL interaction has been selected as an evolutionarily conserved mechanism in mediating necroptosis signaling despite that differing structural and mechanistic bases for this interaction emerged simultaneously in different organisms. In addition, we further revealed that the interaction of RIP3 with MLKL prevented massive abnormal RIP3 aggregation, and therefore should be crucial for formation of the amyloid signaling complex of necrosomes. We also found that the interaction between RIP3 and MLKL is required for the translocation of necrosomes to mitochondria-associated membranes. Our data demonstrate the importance of the RIP3-MLKL interaction in the formation of functional necrosomes and suggest that translocation of necrosomes to mitochondria-associated membranes is essential for necroptosis signaling.


Asunto(s)
Células Musculares/enzimología , Proteínas Musculares/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Amiloide/genética , Amiloide/metabolismo , Animales , Línea Celular , Humanos , Ratones , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Células Musculares/patología , Proteínas Musculares/genética , Necrosis/enzimología , Necrosis/genética , Necrosis/patología , Fosforilación/genética , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37562787

RESUMEN

Nanoparticle-based vaccines offer a multivalent approach for antigen display, efficiently activating T and B cells in the lymph nodes. Among various nanoparticle design strategies, DNA nanotechnology offers an innovative alternative platform, featuring high modularity, spatial addressing, nanoscale regulation, high functional group density, and lower self-antigenicity. This review delves into the potential of DNA nanostructures as biomolecular scaffolds for antigen display, addressing: (1) immunological mechanisms behind nanovaccines and commonly used nanoparticles in their design, (2) techniques for characterizing protein NP-antigen complexes, (3) advancements in DNA nanotechnology and DNA-protein assembly approach, (4) strategies for precise antigen presentation on DNA scaffolds, and (5) current applications and future possibilities of DNA scaffolds in antigen display. This analysis aims to highlight the transformative potential of DNA nanoscaffolds in immunology and vaccinology. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanoestructuras/química , ADN/química , Nanotecnología/métodos , Nanopartículas/química , Proteínas
11.
Front Microbiol ; 15: 1445223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314883

RESUMEN

The growth rate of young ruminants has been associated with production performance in later life, with recent studies highlighting the importance of rumen microbes in supporting the health and growth of ruminants. However, the specific role of rumen epithelium bacteria and microbiota-host interactions in influencing the early life growth rate of ruminants remains poorly understood. In this study, we investigated the rumen fermentation pattern, microbiota characteristics, and global gene expression profiles of the rumen epithelium in 6-month-old goats with varying growth rates. Our results showed that goats with high average daily gain (HADG) exhibited higher rumen propionate concentrations. Goats with low average daily gain (LADG) had the higher relative abundances of rumen epithelium bacteria genera U29-B03 and Quinella, while exhibiting a lower relative abundance of Lachnospiraceae UCG-009. In the rumen fluid, the relative abundances of bacteria genus Alloprevotella were lower and Desulfovibrio were higher in LADG goats compared to HADG goats. Additionally, the relative abundance of fungal genus Symmetrospora was lower in LADG goats compared to HADG goats. Transcriptome analysis showed that 415 genes were differentially expressed between LADG and HADG goats, which were enriched in functions related to cell junction and cell adhesion, etc. Correlation analysis revealed that rumen epithelium bacteria genera UCG-005 and Candidatus Saccharimonas were negatively associated, while Lachnospiraceae NK3A20 group and Oscillospiraceae NK4A214 group were positively associated with average daily gain (ADG) and genes related to barrier function. The rumen fluid bacteria genus Alloprevotella was positively correlated, while Desulfovibrio was negatively correlated with rumen propionate and ammoniacal nitrogen (NH3-N) concentrations, as well as genes related to barrier function and short chain fatty acids (SCFAs) transport. In summary, our study reveals that the higher ruminal fermentation efficiency, improved rumen epithelial barrier functions, and enhanced SCFAs transport in HADG goats could be attributed to the rumen microbiota, particularly the rumen epithelium bacteria, such as Lachnospiraceae and Oscillospiraceae NK4A214 group.

12.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537643

RESUMEN

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Asunto(s)
Dominio Catalítico , Modelos Moleculares , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Humanos , Especificidad por Sustrato , Cristalografía por Rayos X , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Fosforilación , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Multimerización de Proteína , Unión Proteica , Exodesoxirribonucleasas
13.
Immunohorizons ; 7(8): 577-586, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555846

RESUMEN

Phospholipase D4 (PLD4) is an endolysosomal exonuclease of ssRNA and ssDNA, rather than a phospholipase as its name suggests. Human polymorphisms in the PLD4 gene have been linked by genome-wide association studies to systemic sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. However, B6.129 Pld4-/- mice develop features of a distinct disease, macrophage activation syndrome, which is reversed in mice mutated in TLR9. In this article, we compare a Pld4 null mutant identified on the BALB/c background, Pld4thss/thss, which has distinct phenotypes: short stature, thin hair, and features of systemic lupus erythematosus. All phenotypes analyzed were largely normalized in Pld4thss/thssTlr9-/- mice. Thus, Pld4thss/thss represents a rare model in which mouse lupus etiology is TLR9 dependent. Compared with PLD4-deficient B6 mice, Pld4thss/thss mice had elevated levels of serum IgG, IgG anti-dsDNA autoantibodies, BAFF, and IFN-γ and elevated B cell numbers. Overall, the data suggest that PLD4 deficiency can lead to a diverse array of rheumatological abnormalities depending upon background-modifying genes, and that these diseases of PLD4 deficiency are largely driven by TLR9 recognition of ssDNA.


Asunto(s)
Lupus Eritematoso Sistémico , Receptor Toll-Like 9 , Animales , Humanos , Ratones , Exonucleasas/genética , Estudio de Asociación del Genoma Completo , Inmunoglobulina G/genética , Lupus Eritematoso Sistémico/genética , Fosfolipasas , Receptor Toll-Like 9/genética
14.
bioRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045427

RESUMEN

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a 'link-and-release' two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3' phosphistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.

15.
Sci Signal ; 16(798): eabk3516, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582161

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for strategies to rapidly develop neutralizing monoclonal antibodies that can function as prophylactic and therapeutic agents and to help guide vaccine design. Here, we demonstrate that engineering approaches can be used to refocus an existing antibody that neutralizes one virus but not a related virus. Through a rapid affinity maturation strategy, we engineered CR3022, a SARS-CoV-1-neutralizing antibody, to bind to the receptor binding domain of SARS-CoV-2 with >1000-fold increased affinity. The engineered CR3022 neutralized SARS-CoV-2 and provided prophylactic protection from viral challenge in a small animal model of SARS-CoV-2 infection. Deep sequencing throughout the engineering process paired with crystallographic analysis of engineered CR3022 elucidated the molecular mechanisms by which the antibody can accommodate sequence differences in the epitopes between SARS-CoV-1 and SARS-CoV-2. This workflow provides a blueprint for the rapid broadening of neutralization of an antibody from one virus to closely related but resistant viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Antivirales , Pruebas de Neutralización , Anticuerpos Neutralizantes
16.
Animals (Basel) ; 12(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268118

RESUMEN

Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.

17.
Animals (Basel) ; 12(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009721

RESUMEN

The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3ß-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1.

18.
Nat Commun ; 13(1): 462, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075126

RESUMEN

As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos/inmunología , COVID-19/epidemiología , COVID-19/virología , Chlorocebus aethiops , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Pruebas de Neutralización/métodos , Pandemias , Biblioteca de Péptidos , Unión Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
19.
Nat Biotechnol ; 40(8): 1241-1249, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35681059

RESUMEN

Transplantation of B cells engineered ex vivo to secrete broadly neutralizing antibodies (bNAbs) has shown efficacy in disease models. However, clinical translation of this approach would require specialized medical centers, technically demanding protocols and major histocompatibility complex compatibility of donor cells and recipients. Here we report in vivo B cell engineering using two adeno-associated viral vectors, with one coding for Staphylococcus aureus Cas9 (saCas9) and the other for 3BNC117, an anti-HIV bNAb. After intravenously injecting the vectors into mice, we observe successful editing of B cells leading to memory retention and bNAb secretion at neutralizing titers of up to 6.8 µg ml-1. We observed minimal clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 off-target cleavage as detected by unbiased CHANGE-sequencing analysis, whereas on-target cleavage in undesired tissues is reduced by expressing saCas9 from a B cell-specific promoter. In vivo B cell engineering to express therapeutic antibodies is a safe, potent and scalable method, which may be applicable not only to infectious diseases but also in the treatment of noncommunicable conditions, such as cancer and autoimmune disease.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Anticuerpos Neutralizantes/genética , Linfocitos B , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/genética , Infecciones por VIH/terapia , Ratones , Staphylococcus aureus
20.
iScience ; 25(9): 104914, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35971553

RESUMEN

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA